Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 27(21): 27048-27060, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32388754

ABSTRACT

The palm (Elaeis guineensis), known as dendê, is an important oleaginous Brazilian plant with a high performance of oil production. In this work, a 23 full experimental design was performed and the response surface method (RSM) was used to indicate the optimum parameter of caffeine adsorption on Elaeis guineensis endocarp activated carbon, since the endocarp is the main by-product from dendê oil production. It was set the adsorbent point of zero charge (pHpzc), and the material was characterized by Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). The RSM results indicate removal efficiency (%) at the optimal conditions, 0.20 g of adsorbent, and caffeine initial concentration of 20 mg/L, and acidic medium was about 95%. Based on ANOVA and F test (Fcalculated > Fstandard), the mathematical/statistical model obtained fits well to the experimental data. The overall kinetic studies showed time was achieved after 5 h and caffeine adsorption followed the pseudo-second-order model suggesting chemisorption is a predominant mechanism. Redlich-Peterson and Sips models best represented the experimental data (0.967 < R2 < 0.993). Thermodynamic revealed that caffeine adsorption was spontaneous at all temperatures studied, exothermic, and probably with changes in the adsorbate-adsorbent complex during the process. The tests conducted in different water matrixes corroborate the suitability of this adsorbent to be used in caffeine removal even in a complex solution.


Subject(s)
Charcoal , Water Pollutants, Chemical , Adsorption , Brazil , Caffeine/analysis , Hydrogen-Ion Concentration , Kinetics , Research Design , Spectroscopy, Fourier Transform Infrared , Thermodynamics
2.
Anal Bioanal Chem ; 410(12): 2911-2920, 2018 May.
Article in English | MEDLINE | ID: mdl-29523942

ABSTRACT

A new hybrid microextraction technique (hollow fiber microextraction) is presented that uses the main concepts and advantages of the modern miniaturized devices used for trace analysis. This novel analytical approach uses devices made of polypropylene membranes (10.0 mm long and 0.6 mm internal diameter) in which convenient organic solvents are embedded that promote fast kinetics during the enrichment process, using the floating sampling technology concept. An innovative analytical cycle is also proposed by use of low-cost disposable devices during the microextraction stage together with a user-friendly ("single liquid desorption step") back-extraction stage in compliance with green analytical chemistry principles. To evaluate the performance of the proposed technique, 18 polycyclic aromatic hydrocarbons (PAHs) were used as model compounds and were monitored by gas chromatography coupled with mass spectrometry. Under optimized experimental conditions, assays performed on 25 mL aqueous samples spiked with the PAHs at trace level yielded average recoveries between (14.5 ± 8.2)% (dibenzo[a,h]anthracene) and (90.4 ± 8.4)% (benzo[a]anthracene) with use of a device in which n-nonane had been embedded. Low detection limits were also achieved (2.50-6.00 ng L-1), as well as good linear dynamic ranges (20.00-2000.00 ng L-1), with suitable coefficients of determination (r2 > 0.9905) and appropriate precision (relative standard deviation below 15%). By use of the standard addition method, the proposed hybrid microextraction technique had remarkable performance to monitor PAHs at the ultratrace level in several types of matrices, including surface water, wastewater, soil, tea, and fish liver samples. From the data obtained, the new hybrid hollow fiber microextraction technique proved to be user-friendly, eco-friendly, cost-effective, and very competitive for routine work. In short, the novel microextraction technique proposed herein is a remarkable alternative to other well-established microextraction techniques for ultratrace analysis of emerging compounds in real matrices. Graphical abstract Innovative analytical procedure for hollow fiber microextraction (HFµE). GC gas chromatography, LD liquid desorption.

SELECTION OF CITATIONS
SEARCH DETAIL
...