Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 61(17): 6650-6659, 2022 May 02.
Article in English | MEDLINE | ID: mdl-35442660

ABSTRACT

We report the synthesis and optoelectronic properties of high phase-purity (>94 mol %) bulk polycrystals of KCoO2-type layered nitrides AETMN2 (AE = Sr, Ba; and TM = Ti, Zr, Hf), which are expected to exhibit unique electron transport properties originating from their natural two-dimensional (2D) electronic structure, but high-purity intrinsic samples have yet been reported. The bulks were synthesized using a solid-state reaction between AENH and TMN precursors with NaN3 to achieve high N chemical potential during the reaction. The AETMN2 bulks are n-type semiconductors with optical band gaps of 1.63 eV for SrTiN2, 1.97 eV for BaZrN2, and 2.17 eV for BaHfN2. SrTiN2 and BaZrN2 bulks show degenerated electron conduction due to the natural high-density electron doping and paramagnetic behavior in all of the temperature ranges examined, while such unintentional carrier generation is largely suppressed in BaHfN2, which exhibits nondegenerated electron conduction. The BaHfN2 sample also exhibits weak ferromagnetic behavior at temperatures lower than 35 K. Density functional theory calculations suggest that the high-density electron carriers in SrTiN2 come from oxygen impurity substitution at the N site (ON) acting as a shallow donor even if the high-N chemical potential synthesis conditions are employed. On the other hand, the formation energy of ON becomes larger in BaHfN2 because of the stronger TM-N chemical bonds. Present results demonstrate that the easiness of impurity incorporation is designed by density functional calculations to produce a more intrinsic semiconductor in wider chemical conditions, opening a way to cultivating novel functional materials that are sensitive to atmospheric impurities and defects.

2.
ACS Appl Mater Interfaces ; 14(16): 18682-18689, 2022 Apr 27.
Article in English | MEDLINE | ID: mdl-35420024

ABSTRACT

Metastable cubic (Sn1-xPbx)Se with x ≥ 0.5 is expected to be a high mobility semiconductor due to its Dirac-like electronic state, but it has an excessively high carrier concentration of ∼1019 cm-3 and is not suitable for semiconductor device applications such as thin film transistors and solar cells. Further, thin films of (Sn1-xPbx)Se require a complicated synthesis process because of the high vapor pressure of Pb. We herein report the direct growth of metastable cubic (Sn1-xCax)Se films alloyed with CaSe, which has a wider bandgap and lower vapor pressure than PbSe. The cubic (Sn1-xCax)Se epitaxial films with x = 0.4-0.8 are stabilized on YSZ (111) single crystalline substrates by pulsed laser deposition. (Sn1-xCax)Se has a direct-transition-type bandgap, and the bandgap energy can be varied from 1.4 eV (x = 0.4) to 2.0 eV (x = 0.8) by changing x. These films with x = 0.4-0.6 show p-type conduction with low hole carrier concentrations of ∼1017 cm-3. Hall mobility analysis suggests that the hole transport would be dominated by 180° rotational domain structures, which is specific to (111) oriented epitaxial films. However, it, in turn, clarifies that the in-grain carrier mobility in the (Sn0.6Ca0.4)Se film is as high as 322 cm2/(Vs), which is much higher than those in thermodynamically stable layered SnSe and other Sn-based layered semiconductor films at room temperature. Therefore, the present results prove the potential of high mobility (Sn1-xCax)Se films for semiconductor device applications via a simple thin-film deposition process.

3.
Adv Sci (Weinh) ; 9(13): e2105958, 2022 May.
Article in English | MEDLINE | ID: mdl-35257520

ABSTRACT

Tin mono-selenide (SnSe) exhibits the world record of thermoelectric conversion efficiency ZT in the single crystal form, but the performance of polycrystalline SnSe is restricted by low electronic conductivity (σ) and high thermal conductivity (κ), compared to those of the single crystal. Here an effective strategy to achieve high σ and low κ simultaneously is reported on p-type polycrystalline SnSe with isovalent Te ion substitution. The nonequilibrium Sn(Se1- x Tex ) solid solution bulks with x up to 0.4 are synthesized by the two-step process composed of high-temperature solid-state reaction and rapid thermal quenching. The Te ion substitution in SnSe realizes high σ due to the 103 -times increase in hole carrier concentration and effectively reduced lattice κ less than one-third at room temperature. The large-size Te ion in Sn(Se1- x Tex ) forms weak SnTe bonds, leading to the high-density formation of hole-donating Sn vacancies and the reduced phonon frequency and enhanced phonon scattering. This result-doping of large-size ions beyond the equilibrium limit-proposes a new idea for carrier doping and controlling thermal properties to enhance the ZT of polycrystalline SnSe.

4.
Adv Sci (Weinh) ; 8(23): e2102097, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34672114

ABSTRACT

Introducing artificial strain in epitaxial thin films is an effective strategy to alter electronic structures of transition metal oxides (TMOs) and to induce novel phenomena and functionalities not realized in bulk crystals. This study reports a breaking of the conventional trade-off relation in thermopower (S)-conductivity (σ) and demonstrates a 2 orders of magnitude enhancement of power factor (PF) in compressively strained LaTiO3 (LTO) films. By varying substrates and reducing film thickness down to 4 nm, the out-of-plane to the in-plane lattice parameter ratio is controlled from 0.992 (tensile strain) to 1.034 (compressive strain). This tuning induces the electronic structure change from a Mott insulator to a metal and leads to a 103 -fold increase in σ up to 2920 S cm-1 . Concomitantly, the sign of S inverts from positive to negative, and both σ and S increase and break the trade-off relation between them in the n-type region. As a result, the PF (=S2 σ) is significantly enhanced to 300 µW m- 1 K-2 , which is 102 times larger than that of bulk LTO. Present results propose epitaxial strain as a means to finely tune strongly correlated TMOs close to their Mott transition, and thus to harness the hidden large thermoelectric PF.

5.
Nano Lett ; 21(21): 9240-9246, 2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34709840

ABSTRACT

An unusually large thermopower (S) enhancement is induced by heterostructuring thin films of the strongly correlated electron oxide LaNiO3. The phonon-drag effect, which is not observed in bulk LaNiO3, enhances S for thin films compressively strained by LaAlO3 substrates. By a reduction in the layer thickness down to three unit cells and subsequent LaAlO3 surface termination, a 10 times S enhancement over the bulk value is observed due to large phonon drag S (Sg), and the Sg contribution to the total S occurs over a much wider temperature range up to 220 K. The Sg enhancement originates from the coupling of lattice vibration to the d electrons with large effective mass in the compressively strained ultrathin LaNiO3, and the electron-phonon interaction is largely enhanced by the phonon leakage from the LaAlO3 substrate and the capping layer. The transition-metal oxide heterostructures emerge as a new playground to manipulate electronic and phononic properties in the quest for high-performance thermoelectrics.

6.
Inorg Chem ; 60(14): 10227-10234, 2021 Jul 19.
Article in English | MEDLINE | ID: mdl-34237216

ABSTRACT

A layered semiconductor, SrTiN2, has an interesting crystal structure as a two-dimensional (2D) electron system embedded in a three-dimensional bulk periodic structure because it has alternate stacking of a SrN blocking layer and a TiN conduction layer, in which the Ti 3dxy orbital forms the conduction band minimum (CBM) similar to the SrTiO3-based thin-film heterostructure. However, SrTiN2 has been reported to exhibit nearly degenerate conduction, but we reported that it would be due to the easy formation of nitrogen vacancies and oxygen impurities from air. In this paper, we extend the materials to family compounds, alkaline earth (AE) ion-substituted, AETiN2 (AE = Ca, Sr, and Ba), and investigated how we can suppress the defect formation by (hybrid) density functional theory calculations. All AETiN2 compounds possess thermodynamic stability in the wide nitrogen (N) chemical potential window. Especially, CaTiN2 is the most stable even against N-poor conditions. Unintentional carrier generation occurs due to the nitrogen vacancies (VN), oxygen substitution (ON), and hydrogen anion substitution (HN) at the nitrogen sites. The VN and HN impurities can be suppressed under N-moderate and N-rich conditions. The ON defect is easily formed in SrTiN2 and also in BaTiN2 under N-rich conditions, but its formation can be suppressed in CaTiN2. Present results suggest that high-purity CaTiN2 can be obtained under wider N chemical conditions, which would lead to the realization of the novel functional properties originating from Ti 3dxy 2D bands embedded in the bulk crystal structure.

7.
Sci Adv ; 7(12)2021 Mar.
Article in English | MEDLINE | ID: mdl-33741599

ABSTRACT

Material properties depend largely on the dimensionality of the crystal structures and the associated electronic structures. If the crystal-structure dimensionality can be switched reversibly in the same material, then a drastic property change may be controllable. Here, we propose a design route for a direct three-dimensional (3D) to 2D structural phase transition, demonstrating an example in (Pb1-x Sn x )Se alloy system, where Pb2+ and Sn2+ have similar ns2 pseudo-closed shell configurations, but the former stabilizes the 3D rock-salt-type structure while the latter a 2D layered structure. However, this system has no direct phase boundary between these crystal structures under thermal equilibrium. We succeeded in inducing the direct 3D-2D structural phase transition in (Pb1-x Sn x )Se alloy epitaxial films by using a nonequilibrium growth technique. Reversible giant electronic property change was attained at x ~ 0.5 originating in the abrupt band structure switch from gapless Dirac-like state to semiconducting state.

8.
Phys Chem Chem Phys ; 20(32): 20952-20956, 2018 Aug 15.
Article in English | MEDLINE | ID: mdl-30069569

ABSTRACT

Hydrogen (H) plays critical roles in the electrical properties of semiconductor materials and devices. In this work, we report multiple states and roles of H in SnS by H plasma treatment and density functional theory (DFT) calculations. The as-deposited SnS films include impurity H at 2.3 × 1019 cm-3, four orders of magnitude larger than the hole density. The DFT calculations reveal that H exists in multiple states at the equilibrium mainly at the interstitial and the Sn-substitutional sites, which have formation enthalpies lower than those for the intrinsic defects. These H states work as donors and acceptors, respectively, and strongly pin the Fermi level in the p-type region. The native p-type conduction in the actual SnS semiconductors is caused mainly by the H-on-Sn (HSn) acceptors, rather than the previously reported Sn vacancies (VSn) for pure SnS. It is also confirmed that even stronger H doping with larger H chemical potentials cannot convert SnS to an n-type conductor because it reduces SnS to Sn metal.

SELECTION OF CITATIONS
SEARCH DETAIL
...