Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 21937, 2021 Nov 09.
Article in English | MEDLINE | ID: mdl-34754019

ABSTRACT

Topological Dirac semimetals (TDSs) offer an excellent opportunity to realize outstanding physical properties distinct from those of topological insulators. Since TDSs verified so far have their own problems such as high reactivity in the atmosphere and difficulty in controlling topological phases via chemical substitution, it is highly desirable to find a new material platform of TDSs. By angle-resolved photoemission spectroscopy combined with first-principles band-structure calculations, we show that ternary compound BaMg2Bi2 is a TDS with a simple Dirac-band crossing around the Brillouin-zone center protected by the C3 symmetry of crystal. We also found that isostructural SrMg2Bi2 is an ordinary insulator characterized by the absence of band inversion due to the reduction of spin-orbit coupling. Thus, XMg2Bi2 (X = Sr, Ba, etc.) serves as a useful platform to study the interplay among crystal symmetry, spin-orbit coupling, and topological phase transition around the TDS phase.

2.
Nat Commun ; 10(1): 2298, 2019 05 24.
Article in English | MEDLINE | ID: mdl-31127112

ABSTRACT

The peculiar metallic electronic states observed in the Kondo insulator, samarium hexaboride (SmB6), has stimulated considerable attention among those studying non-trivial electronic phenomena. However, experimental studies of these states have led to controversial conclusions mainly due to the difficulty and inhomogeneity of the SmB6 crystal surface. Here, we show the detailed electronic structure of SmB6 with angle-resolved photoelectron spectroscopy measurements of the three-fold (111) surface where only two inequivalent time-reversal-invariant momenta (TRIM) exist. We observe the metallic two-dimensional state was dispersed across the bulk Kondo gap. Its helical in-plane spin polarisation around the surface TRIM indicates that SmB6 is topologically non-trivial, according to the topological classification theory for weakly correlated systems. Based on these results, we propose a simple picture of the controversial topological classification of SmB6.

3.
Sci Adv ; 4(7): eaar3867, 2018 07.
Article in English | MEDLINE | ID: mdl-30062122

ABSTRACT

The observation and control of interweaving spin, charge, orbital, and structural degrees of freedom in materials on ultrafast time scales reveal exotic quantum phenomena and enable new active forms of nanotechnology. Bonding is the prime example of the relation between electronic and nuclear degrees of freedom. We report direct evidence illustrating that photoexcitation can be used for ultrafast control of the breaking and recovery of bonds in solids on unprecedented time scales, near the limit for nuclear motions. We describe experimental and theoretical studies of IrTe2 using femtosecond electron diffraction and density functional theory to investigate bonding instability. Ir-Ir dimerization shows an unexpected fast dissociation and recovery due to the filling of the antibonding dxy orbital. Bond length changes of 20% in IrTe2 are achieved by effectively addressing the bonds directly through this relaxation process. These results could pave the way to ultrafast switching between metastable structures by photoinduced manipulation of the relative degree of bonding in this manner.

4.
Nano Lett ; 17(6): 3493-3500, 2017 06 14.
Article in English | MEDLINE | ID: mdl-28545300

ABSTRACT

Inducing magnetism into topological insulators is intriguing for utilizing exotic phenomena such as the quantum anomalous Hall effect (QAHE) for technological applications. While most studies have focused on doping magnetic impurities to open a gap at the surface-state Dirac point, many undesirable effects have been reported to appear in some cases that makes it difficult to determine whether the gap opening is due to the time-reversal symmetry breaking or not. Furthermore, the realization of the QAHE has been limited to low temperatures. Here we have succeeded in generating a massive Dirac cone in a MnBi2Se4/Bi2Se3 heterostructure, which was fabricated by self-assembling a MnBi2Se4 layer on top of the Bi2Se3 surface as a result of the codeposition of Mn and Se. Our experimental results, supported by relativistic ab initio calculations, demonstrate that the fabricated MnBi2Se4/Bi2Se3 heterostructure shows ferromagnetism up to room temperature and a clear Dirac cone gap opening of ∼100 meV without any other significant changes in the rest of the band structure. It can be considered as a result of the direct interaction of the surface Dirac cone and the magnetic layer rather than a magnetic proximity effect. This spontaneously formed self-assembled heterostructure with a massive Dirac spectrum, characterized by a nontrivial Chern number C = -1, has a potential to realize the QAHE at significantly higher temperatures than reported up to now and can serve as a platform for developing future "topotronics" devices.

5.
Nat Commun ; 7: 12690, 2016 08 31.
Article in English | MEDLINE | ID: mdl-27576449

ABSTRACT

A synergistic effect between strong electron correlation and spin-orbit interaction has been theoretically predicted to realize new topological states of quantum matter on Kondo insulators (KIs), so-called topological Kondo insulators (TKIs). One TKI candidate has been experimentally observed on the KI SmB6(001), and the origin of the surface states (SS) and the topological order of SmB6 has been actively discussed. Here, we show a metallic SS on the clean surface of another TKI candidate YbB12(001) using angle-resolved photoelectron spectroscopy. The SS shows temperature-dependent reconstruction corresponding to the Kondo effect observed for bulk states. Despite the low-temperature insulating bulk, the reconstructed SS with c-f hybridization is metallic, forming a closed Fermi contour surrounding on the surface Brillouin zone and agreeing with the theoretically expected behaviour for SS on TKIs. These results demonstrate the temperature-dependent holistic reconstruction of two-dimensional states localized on KIs surface driven by the Kondo effect.

6.
Phys Rev Lett ; 115(25): 256404, 2015 Dec 18.
Article in English | MEDLINE | ID: mdl-26722934

ABSTRACT

A 1D metallic surface state was created on an anisotropic InSb(001) surface covered with Bi. Angle-resolved photoelectron spectroscopy (ARPES) showed a 1D Fermi contour with almost no 2D distortion. Close to the Fermi level (E_{F}), the angle-integrated photoelectron spectra showed power-law scaling with the binding energy and temperature. The ARPES plot above E_{F}, obtained thanks to a thermally broadened Fermi edge at room temperature, showed a 1D state with continuous metallic dispersion across E_{F} and power-law intensity suppression around E_{F}. These results strongly suggest a Tomonaga-Luttinger liquid on the Bi/InSb(001) surface.


Subject(s)
Antimony/chemistry , Bismuth/chemistry , Indium/chemistry , Models, Chemical , Alloys/chemistry , Anisotropy , Photoelectron Spectroscopy
SELECTION OF CITATIONS
SEARCH DETAIL
...