Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 32(9): 15106-15114, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38859169

ABSTRACT

A GaSb-based SEmiconductor Saturable Absorber Mirror (SESAM) enables continuous-wave picosecond mode-locked operation with excellent stability of a polarization-maintaining mid-infrared Er:ZBLAN fiber laser. The GaSb-based SESAM mode-locked fiber laser delivers an average output power of 190 mW at 2.76 µm at a repetition rate of 32.07 MHz (corresponding to a pulse energy of ∼6 nJ) and exhibits a high signal-to-noise ratio of ∼80 dB. The polarization extinction ratio is more than 23 dB. By employing an intracavity diffraction grating, the laser wavelength is continuously tunable across 2.706-2.816 µm. Passively Q-switched operation of this laser is also demonstrated.

2.
Opt Express ; 32(9): 15093-15105, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38859168

ABSTRACT

We report on a femtosecond thulium laser operating on the 3H4 → 3H5 transition with upconversion pumping around 1 µm and passively mode-locked by a GaSb-based SEmiconductor Saturable Absorber Mirror (SESAM). This laser employs a 6 at.% Tm:LiYF4 laser crystal and a polarization maintaining Yb-fiber master oscillator power amplifier at 1043 nm as a pump source addressing the 3F4 → 3F2,3 excited-state absorption transition of Tm3+ ions. In the continuous-wave regime, the Tm-laser generates 616 mW at ∼2313 nm with a slope efficiency of 10.0% (vs. the incident pump power) and a linear polarization (π). By implementing a type-I SESAM with a single ternary strained In0.33Ga0.67Sb quantum well embedded in GaSb for sustaining and stabilizing the soliton pulse shaping, the self-starting mode-locked Tm-laser generated pulses as short as 870 fs at a central wavelength of 2309.4 nm corresponding to an average output power of 208 mW at a pulse repetition rate of 105.08 MHz and excellent mode-locking stability. The output power was scaled to 450 mW at the expense of a longer pulse duration of 1.93 ps. The nonlinear parameters of the SESAM are also reported.

3.
Appl Opt ; 63(3): 575-584, 2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38294367

ABSTRACT

A liquid lens is used to realize an adaptive interferometric particle imaging system. The defocus parameter of the system can be changed instantaneously by adjusting the voltage applied to the lens. This enables adjusting the imaging conditions in real time. The setup is first tested on programmable rough particles generated by a digital micromirror device (DMD), and then with real glass particles under nanosecond pulse illumination.

4.
Light Sci Appl ; 12(1): 252, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37848458

ABSTRACT

The mid-infrared spectral region opens up new possibilities for applications such as molecular spectroscopy with high spatial and frequency resolution. For example, the mid-infrared light provided by synchrotron sources has helped for early diagnosis of several pathologies. However, alternative light sources at the table-top scale would enable better access to these state-of-the-art characterizations, eventually speeding up research in biology and medicine. Mid-infrared supercontinuum generation in highly nonlinear waveguides pumped by compact fiber lasers represents an appealing alternative to synchrotrons. Here, we introduce orientation-patterned gallium arsenide waveguides as a new versatile platform for mid-infrared supercontinuum generation. Waveguides and fiber-based pump lasers are optimized in tandem to allow for the group velocities of the signal and the idler waves to match near the degeneracy point. This configuration exacerbates supercontinuum generation from 4 to 9 µm when waveguides are pumped at 2750 nm with few-nanojoule energy pulses. The brightness of the novel mid-infrared source exceeds that of the third-generation synchrotron source by a factor of 20. We also show that the nonlinear dynamics is strongly influenced by the choice of waveguide and laser parameters, thus offering an additional degree of freedom in tailoring the spectral profile of the generated light. Such an approach then opens new paths for high-brightness mid-infrared laser sources development for high-resolution spectroscopy and imaging. Furthermore, thanks to the excellent mechanical and thermal properties of the waveguide material, further power scaling seems feasible, allowing for the generation of watt-level ultra-broad frequency combs in the mid-infrared.

5.
Light Sci Appl ; 11(1): 66, 2022 Mar 23.
Article in English | MEDLINE | ID: mdl-35318313

ABSTRACT

Driven by many applications in a wide span of scientific fields, a myriad of advanced ultrafast imaging techniques have emerged in the last decade, featuring record-high imaging speeds above a trillion-frame-per-second with long sequence depths. Although bringing remarkable insights into various ultrafast phenomena, their application out of a laboratory environment is however limited in most cases, either by the cost, complexity of the operation or by heavy data processing. We then report a versatile single-shot imaging technique combining sequentially timed all-optical mapping photography (STAMP) with acousto-optics programmable dispersive filtering (AOPDF) and digital in-line holography (DIH). On the one hand, a high degree of simplicity is reached through the AOPDF, which enables full control over the acquisition parameters via an electrically driven phase and amplitude spectro-temporal tailoring of the imaging pulses. Here, contrary to most single-shot techniques, the frame rate, exposure time, and frame intensities can be independently adjusted in a wide range of pulse durations and chirp values without resorting to complex shaping stages, making the system remarkably agile and user-friendly. On the other hand, the use of DIH, which does not require any reference beam, allows to achieve an even higher technical simplicity by allowing its lensless operation but also for reconstructing the object on a wide depth of field, contrary to classical techniques that only provide images in a single plane. The imaging speed of the system as well as its flexibility are demonstrated by visualizing ultrashort events on both the picosecond and nanosecond timescales. The virtues and limitations as well as the potential improvements of this on-demand ultrafast imaging method are critically discussed.

6.
Opt Lett ; 45(23): 6398-6401, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33258821

ABSTRACT

We demonstrate a fiber optical parametric chirped-pulse oscillator (FOPCPO) pumped in the normal-dispersion regime by chirped pulses at 1.036 µm. Highly chirped idler pulses tunable from 1210 nm to 1270 nm with energies higher than 250 nJ are generated from our system, along with signal pulses tunable from 870 nm to 910 nm. Numerical simulations demonstrate that further energy scaling is possible and paves the way for the use of such FOPCPOs for applications requiring high-energy, compact, and low-noise sources, such as in biophotonics or spectroscopy.

7.
Opt Express ; 23(26): 33396-407, 2015 Dec 28.
Article in English | MEDLINE | ID: mdl-26832004

ABSTRACT

Modern diesel injectors operate at very high injection pressures of about 2000 bar resulting in injection velocities as high as 700 m/s near the nozzle outlet. In order to better predict the behavior of the atomization process at such high pressures, high-resolution spray images at high repetition rates must be recorded. However, due to extremely high velocity in the near-nozzle region, high-speed cameras fail to avoid blurring of the structures in the spray images due to their exposure time. Ultrafast imaging featuring ultra-short laser pulses to freeze the motion of the spray appears as an well suited solution to overcome this limitation. However, most commercial high-energy ultrafast sources are limited to a few kHz repetition rates. In the present work, we report the development of a custom-designed picosecond fiber laser generating ∼ 20 ps pulses with an average power of 2.5 W at a repetition rate of 8.2 MHz, suitable for high-speed imaging of high-pressure fuel jets. This fiber source has been proof tested by obtaining backlight images of diesel sprays issued from a single-orifice injector at an injection pressure of 300 bar. We observed a consequent improvement in terms of image resolution compared to standard white-light illumination. In addition, the compactness and stability against perturbations of our fiber laser system makes it particularly suitable for harsh experimental conditions.

8.
Opt Express ; 22(13): 15778-90, 2014 Jun 30.
Article in English | MEDLINE | ID: mdl-24977836

ABSTRACT

Imaging with ultrashort exposure times is generally achieved with a crossed-beam geometry. In the usual arrangement, an off-axis gating pulse induces birefringence in a medium exhibiting a strong Kerr response (commonly carbon disulfide) which is followed by a polarizer aligned to fully attenuate the on-axis imaging beam. By properly timing the gate pulse, imaging light experiences a polarization change allowing time-dependent transmission through the polarizer to form an ultrashort image. The crossed-beam system is effective in generating short gate times, however, signal transmission through the system is complicated by the crossing angle of the gate and imaging beams. This work presents a robust ultrafast time-gated imaging scheme based on a combination of type-I frequency doubling and a collinear optical arrangement in carbon disulfide. We discuss spatial effects arising from crossed-beam Kerr gating, and examine the imaging spatial resolution and transmission timing affected by collinear activation of the Kerr medium, which eliminates crossing angle spatial effects and produces gate times on the order of 1 ps. In addition, the collinear, two-color system is applied to image structure in an optical fiber and a gasoline fuel spray, in order to demonstrate image formation utilizing ballistic or refracted light, selected on the basis of its transmission time.

9.
J Opt Soc Am A Opt Image Sci Vis ; 26(9): 1995-2004, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19721685

ABSTRACT

A method to distinguish a hidden object from a perturbing environment is to use an ultrashort femtosecond pulse of light and a time-resolved detection. To separate ballistic light containing information on a hidden object from multiscattered light coming from the surrounding environment that scrambles the signal, an optical Kerr gate can be used. It consists of a carbon disulfide (CS(2)) cell in which birefringence is optically induced. An imaging beam passes through the studied medium while a pump pulse is used to open the gate. The time-delayed scattered light is excluded from measurements by the gate, and the multiple-scattering scrambling effect is reduced. In previous works, the two beams had the same wavelength. We propose a new two-color experimental setup for ballistic imaging in which a second harmonic is generated and used for the image, while the fundamental is used for gate switching. This setup allows one to obtain better resolution by using a spectral filtering to eliminate noise from the pump pulse, instead of a spatial filtering. This new setup is suitable for use in ballistic imaging of dense sprays, multidiffusive, and large enough to show scattered light time delays greater than the gate duration (tau=1.3 ps).

SELECTION OF CITATIONS
SEARCH DETAIL
...