Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 23(15)2022 Jul 30.
Article in English | MEDLINE | ID: mdl-35955590

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) are associated with obesity. They are accompanied by increased levels of free cholesterol in the liver. Most free cholesterol resides within the plasma membrane. We assessed the impact of adding or removing free cholesterol on the function and localization of two hepatocellular uptake transporters: the Na+/taurocholate cotransporting polypeptide (NTCP) and the organic cation transporter 1 (OCT1). We used a cholesterol-MCD complex (cholesterol) to add cholesterol and methyl-ß-cyclodextrin (MCD) to remove cholesterol. Our results demonstrate that adding cholesterol decreases NTCP capacity from 132 ± 20 to 69 ± 37 µL/mg/min and OCT1 capacity from 209 ± 66 to 125 ± 26 µL/mg/min. Removing cholesterol increased NTCP and OCT1 capacity to 224 ± 65 and 279 ± 20 µL/mg/min, respectively. In addition, adding cholesterol increased the localization of NTCP within lipid rafts, while adding or removing cholesterol increased OCT1 localization in lipid rafts. These results demonstrate that increased cholesterol levels can impair NTCP and OCT1 function, suggesting that the free cholesterol content of the liver can alter bile acid and drug uptake into the liver. This could explain the increased plasma bile acid levels in NAFLD and NASH patients and potentially lead to altered drug disposition.


Subject(s)
Non-alcoholic Fatty Liver Disease , Octamer Transcription Factor-1/metabolism , Symporters , Bile Acids and Salts/metabolism , Cholesterol/metabolism , Humans , Liver/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Organic Anion Transporters, Sodium-Dependent/metabolism , Organic Cation Transporter 1/metabolism , Peptides/metabolism , Symporters/metabolism , Taurocholic Acid
2.
Livers ; 1(4): 221-229, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34738093

ABSTRACT

Na+/taurocholate cotransporting polypeptide (NTCP) is important for the enterohepatic circulation of bile acids, which has been suggested to contribute to the long serum elimination half-lives of perfluoroalkyl substances in humans. We demonstrated that some perfluoroalkyl sulfonates are transported by NTCP; however, little was known about carboxylates. The purpose of this study was to determine if perfluoroalkyl carboxylates would interact with NTCP and potentially act as substrates. Sodium-dependent transport of [3H]-taurocholate was measured in human embryonic kidney cells (HEK293) stably expressing NTCP in the absence or presence of perfluoroalkyl carboxylates with varying chain lengths. PFCAs with 8 (PFOA), 9 (PFNA), and 10 (PFDA) carbons were the strongest inhibitors. Inhibition kinetics demonstrated competitive inhibition and indicated that PFNA was the strongest inhibitor followed by PFDA and PFOA. All three compounds are transported by NTCP, and kinetics experiments revealed that PFOA had the highest affinity for NTCP with a Km value of 1.8 ± 0.4 mM. The Km value PFNA was estimated to be 5.3 ± 3.5 mM and the value for PFDA could not be determined due to limited solubility. In conclusion, our results suggest that, in addition to sulfonates, perfluorinated carboxylates are substrates of NTCP and have the potential to interact with NTCP-mediated transport.

3.
FASEB J ; 35(5): e21533, 2021 05.
Article in English | MEDLINE | ID: mdl-33826787

ABSTRACT

Polycystic kidney disease (PKD) is a genetic disorder characterized by aberrant renal epithelial cell proliferation and formation and progressive growth of numerous fluid-filled cysts within the kidneys. Previously, we showed that there is elevated Notch signaling compared to normal renal epithelial cells and that Notch signaling contributes to the proliferation of cystic cells. Quinomycin A, a bis-intercalator peptide, has previously been shown to target the Notch signaling pathway and inhibit tumor growth in cancer. Here, we show that Quinomycin A decreased cell proliferation and cyst growth of human ADPKD cyst epithelial cells cultured within a 3D collagen gel. Treatment with Quinomycin A reduced kidney weight to body weight ratio and decreased renal cystic area and fibrosis in Pkd1RC/RC ; Pkd2+/- mice, an orthologous PKD mouse model. This was accompanied by reduced expression of Notch pathway proteins, RBPjk and HeyL and cell proliferation in kidneys of PKD mice. Quinomycin A treatments also normalized cilia length of cyst epithelial cells derived from the collecting ducts. This is the first study to demonstrate that Quinomycin A effectively inhibits PKD progression and suggests that Quinomycin A has potential therapeutic value for PKD patients.


Subject(s)
Anti-Bacterial Agents/pharmacology , Cysts/drug therapy , Disease Models, Animal , Echinomycin/pharmacology , Polycystic Kidney Diseases/complications , TRPP Cation Channels/physiology , Animals , Cysts/etiology , Cysts/metabolism , Cysts/pathology , Disease Progression , Mice , Mice, Inbred C57BL , Mice, Knockout
4.
Psychiatry Res ; 295: 113637, 2021 01.
Article in English | MEDLINE | ID: mdl-33321401

ABSTRACT

The LS and HS are rat lines selectively bred for altered cocaine self-administration. Given the importance of mental health in substance use, these lines were evaluated for putative depression- and anxiety- like behaviors through forced swimming and exploration of a plus maze. We found increases of struggling in LS males, climbing in LS females, and swimming in HS males; with biphasic effects on immobility in the HS strain. HS rats had fewer entries into and less time spent in open arms of the plus maze, consistent with greater anxiety-like behavior, which may contribute to enhanced drug taking.


Subject(s)
Anxiety/psychology , Cocaine/administration & dosage , Depression/psychology , Reinforcement, Psychology , Selective Breeding , Animals , Anxiety/genetics , Depression/genetics , Dopamine Uptake Inhibitors/administration & dosage , Female , Male , Maze Learning/drug effects , Rats , Rats, Wistar , Selective Breeding/genetics , Self Administration , Swimming/psychology
5.
Dis Model Mech ; 12(12)2019 12 17.
Article in English | MEDLINE | ID: mdl-31727625

ABSTRACT

Notch pathway activation plays a central role in the pathogenesis of many glomerular diseases. We have previously shown that Notch4 expression was upregulated in various renal cells in human immunodeficiency virus (HIV)-associated nephropathy (HIVAN) patients and rodent models of HIVAN. In this study, we examined whether the Notch pathway can be distinctly activated by HIV-1 gene products and whether Notch4, in particular, can influence disease progression. Using luciferase reporter assays, we did not observe activation of the NOTCH4 promoter with the HIV protein Nef in podocytes. Further, we observed upregulated expression of a gamma secretase complex protein, presenilin 1, but not Notch4, in podocytes infected with an HIV-1 expression construct. To assess the effects of Notch4 on HIVAN disease progression, we engineered Tg26 mice with global deletion of the Notch4 intracellular domain (Notch4dl ), which is required for signaling function. These mice (Notch4d1/Tg26+ ) showed a significant improvement in renal function and a significant decrease in mortality compared to Tg26 mice. Histological examination of kidneys showed that Notch4d1/Tg26+ mice had overall glomerular, tubulointerstitial injury and a marked decrease in interstitial inflammation. A significant decrease in the proliferating cells was observed in the tubulointerstitial compartments of Notch4d1/Tg26+ mice. Consistent with the diminished inflammation, kidneys from Notch4d1/Tg26+ mice also showed a significant decrease in expression of the inflammatory cytokine transcripts Il-6 and Ccl2, as well as the master inflammatory transcription factor NF-κB (Nfkb1 transcripts and p65 protein). These data identify Notch4 as an important mediator of tubulointerstitial injury and inflammation in HIVAN and a potential therapeutic target.


Subject(s)
AIDS-Associated Nephropathy/metabolism , Inflammation/metabolism , NF-kappa B p50 Subunit/metabolism , Receptor, Notch4/metabolism , Animals , Cell Proliferation , Crosses, Genetic , Disease Models, Animal , Disease Progression , Female , Gene Deletion , HEK293 Cells , Humans , Kidney/metabolism , Male , Mice , Mice, Transgenic , Podocytes/metabolism , Signal Transduction , Transcription Factor RelA/metabolism , Treatment Outcome , nef Gene Products, Human Immunodeficiency Virus/metabolism
6.
Behav Pharmacol ; 30(6): 478-489, 2019 09.
Article in English | MEDLINE | ID: mdl-30724803

ABSTRACT

Activation of muscarinic receptors in the brain antagonizes the actions of cocaine, blocking both its discriminative stimulus and reinforcing properties. Pilocarpine is a nonselective muscarinic agonist that is used clinically, but has not been well characterized for its actions during cocaine-reinforced behavior. This study evaluated its effects on cocaine-reinforced and food-reinforced behaviors in rats, using the cholinesterase inhibitor tacrine as a comparator. Intraperitoneal pilocarpine or tacrine at doses of 1.0 mg/kg or more attenuated self-administration of low-dose cocaine (0.1 mg/kg injection) but also increased oral movements. Pilocarpine was less potent than tacrine in decreasing responding supported by low or intermediate amounts of liquid food. Combined treatment with pilocarpine and tacrine was more effective than either compound alone in attenuating self-administration of intermediate-dose cocaine. At a low (0.66 mg/kg) dose which did not modify reinforced responding, pilocarpine increased nonspecific behavior (sniffing, rearing, and activity) in cocaine-reinforced but not in food-reinforced animals; with greater doses increasing cholinergic or gastrointestinal signs. These effects were most consistently correlated with changes in reinforcement in rats responding for cocaine relative to food-reinforced animals. Overall, pilocarpine exhibited modest selectivity for attenuating self-administration of low-dose cocaine without affecting a nondrug reinforcer.


Subject(s)
Cocaine-Related Disorders/drug therapy , Pilocarpine/pharmacology , Tacrine/pharmacology , Animals , Cholinesterase Inhibitors/pharmacology , Cholinesterases , Cocaine/metabolism , Cocaine/pharmacology , Conditioning, Operant/drug effects , Dopamine Uptake Inhibitors/pharmacology , Dose-Response Relationship, Drug , Food , Male , Muscarinic Agonists/metabolism , Muscarinic Agonists/pharmacology , Pilocarpine/metabolism , Rats , Rats, Wistar , Receptors, Muscarinic/metabolism , Reinforcement, Psychology , Self Administration , Tacrine/metabolism
7.
Sci Rep ; 8(1): 3340, 2018 02 20.
Article in English | MEDLINE | ID: mdl-29463793

ABSTRACT

Polycystic kidney disease (PKD) is a genetic disorder characterized by fluid-filled cysts in the kidney and liver that ultimately leads to end-stage renal disease. Currently there is no globally approved therapy for PKD. The Notch signaling pathway regulates cellular processes such as proliferation and de-differentiation, which are cellular hallmarks of PKD. Thus we hypothesized that the Notch pathway plays a critical role in PKD. Evaluation of protein expression of Notch signaling components in kidneys of Autosomal Recessive PKD (ARPKD) and Autosomal Dominant PKD (ADPKD) mouse models and of ADPKD patients revealed that Notch pathway members, particularly Notch3, were consistently upregulated or activated in cyst-lining epithelial cells. Notch3 expression correlated with rapidly growing cysts and co-localized with the proliferation marker, PCNA. Importantly, Notch inhibition significantly decreased forskolin-induced Notch3 activation and proliferation of primary human ADPKD cells, and significantly reduced cyst formation and growth of human ADPKD cells cultured in collagen gels. Thus our data indicate that Notch3 is aberrantly activated and facilitates epithelial cell proliferation in PKD, and that inhibition of Notch signaling may prevent cyst formation and growth.


Subject(s)
Gene Expression Regulation , Polycystic Kidney Diseases/pathology , Receptor, Notch3/analysis , Signal Transduction , Animals , Cell Proliferation , Disease Models, Animal , Epithelial Cells/pathology , Gene Expression Profiling , Humans , Mice , Middle Aged , Proliferating Cell Nuclear Antigen/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...