Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 14(8)2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38668170

ABSTRACT

Scleroglucan (SG) is resistant to harsh reservoir conditions such as high temperature, high shear stresses, and the presence of chemical substances. However, it is susceptible to biological degradation because bacteria use SG as a source of energy and carbon. All degradation effects lead to viscosity loss of the SG solutions, affecting their performance as an enhanced oil recovery (EOR) polymer. Recent studies have shown that nanoparticles (NPs) can mitigate these degradative effects. For this reason, the EOR performance of two new nanohybrids (NH-A and NH-B) based on carboxymethyl-scleroglucan and amino-functionalized silica nanoparticles was studied. The susceptibility of these products to chemical, mechanical, and thermal degradation was evaluated following standard procedures (API RP 63), and the microbial degradation was assessed under reservoir-relevant conditions (1311 ppm and 100 °C) using a bottle test system. The results showed that the chemical reactions for the nanohybrids obtained modified the SG triple helix configuration, impacting its viscosifying power. However, the nanohybrid solutions retained their viscosity during thermal, mechanical, and chemical degradation experiments due to the formation of a tridimensional network between the nanoparticles (NPs) and the SG. Also, NH-A and NH-B solutions exhibited bacterial control because of steric hindrances caused by nanoparticle modifications to SG. This prevents extracellular glucanases from recognizing the site of catalysis, limiting free glucose availability and generating cell death due to substrate depletion. This study provides insights into the performance of these nanohybrids and promotes their application in reservoirs with harsh conditions.

2.
Nanomaterials (Basel) ; 14(6)2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38535647

ABSTRACT

In this study, two new nanohybrids (NH-A and NH-B) were synthesized through carbodiimide-assisted coupling. The reaction was performed between carboxymethyl-scleroglucans (CMS-A and CMS-B) with different degrees of substitution and commercial amino-functionalized silica nanoparticles using 4-(dimethylamino)-pyridine (DMAP) and N,N'-dicyclohexylcarbodiimide (DCC) as catalysts. The morphology and properties of the nanohybrids were investigated by using transmission (TEM) and scanning electron microscopy (SEM), electron-dispersive scanning (EDS), attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FT-IR), X-ray photoelectron spectroscopy (XPS), powder X-ray diffraction (XRD), inductively coupled plasma atomic emission spectroscopy (ICP-OES), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and dynamic light scattering (DLS). The nanohybrids exhibited differences in structure due to the incorporation of polyhedral oligomeric silsesquioxane (POSS) materials. The results reveal that hybrid nanomaterials exhibit similar thermal properties but differ in morphology, chemical structure, and crystallinity properties. Finally, a viscosity study was performed on the newly obtained nanohybrid materials; viscosities of nanohybrids increased significantly in comparison to the carboxymethyl-scleroglucans, with a viscosity difference of 7.2% for NH-A and up to 32.6% for NH-B.

SELECTION OF CITATIONS
SEARCH DETAIL
...