Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(4)2023 Feb 11.
Article in English | MEDLINE | ID: mdl-36837150

ABSTRACT

Iron-based compounds with a ThMn12-type structure have the potential to bridge the gap between ferrites and high performance Nd2Fe14B magnets. From the point of view of possible applications, the main advantage is their composition, with about 10 wt.% less rare earth elements in comparison with the 2:14:1 phase. On the other hand, the main issue delaying the development of Fe-rich alloys with a ThMn12-type structure is their structural stability. Therefore, various synthesis methods and stabilizing elements have been proposed to stabilize the structure. In this work, the influence of increasing Nd substitution on the phase constitution of Zr0.4-xNdxCe0.6Fe10Si2 (0 ≤ x ≤ 0.3) alloys was analyzed. X-ray diffraction and 57Fe Mössbauer spectrometry were used as the main methods to derive the stability range and destabilization routes of the 1:12 structure. For the arc-melted samples, an increase in the lattice parameters of the ThMn12-type structure was observed with the simultaneous growth of bcc-(Fe,Si) content with increasing Nd substitution. After isothermal annealing, the ThMn12-type structure (and the coexisting bcc-(Fe,Si)) were stable over the whole composition range. While the formation of a 1:12 phase was totally suppressed in the as-cast state for x = 0.3, further heat treatment resulted in the growth of about 45% of the ThMn12-type phase. The results confirmed that the stability range of ThMn12-type structure in the Nd-containing alloys was well improved by other substitutions and the heat treatment, which in turn, is also needed to homogenize the ThMn12-type phase. After further characterization of the magnetic properties and optimization of microstructure, such hard/soft magnetic composites can show their potential by exploiting the exchange spring mechanism.

2.
PeerJ ; 9: e10630, 2021.
Article in English | MEDLINE | ID: mdl-33604170

ABSTRACT

The open space is a hostile environment for all lifeforms not only due to vacuum, high radiation, low atmospheric pressure, and extremely low temperature, but also the absence of the geomagnetic field. The geomagnetic field protects Earth mainly from corpuscular radiation, that is, solar wind and cosmic radiation, but above all it influences organisms, including their cells, tissues and organs. Moreover, numerous studies conducted on plants and animals confirmed that hypomagnetic conditions (the term referring to all situations when the magnetic field is weaker than the typical geomagnetic field) have significant influence on the metabolism of living organisms. Although many studies dealt with a variety of aspects related mainly to the influence of hypomagnetic conditions on human health. Very few studies have considered the influence of hypomagnetic conditions on extremophiles. Astrobiologists have long been testing different extremofiles to find out if any multicellular organisms are able to survive in extreme conditions of open space. Among all multicellular extremophiles fit for such research, water bears (Tardigrada) are the most interesting. Not only are they one of the most resistant organisms on Earth, but results obtained from studies on these invertebrates can be extrapolated or applied to vertebrates (including humans). Despite this, studies on the influence of hypomagnetic conditions on tardigrades are rare, so far. In the present study, to test the influence of hypomagnetic conditions on the process of anhydrobiosis while entering and returning from anhydrobiosis, we used two terrestrial anhydrobiotic species that are Echiniscus testudo and Milnesium inceptum. To exclude the ambient magnetic field, experiments were carried out in a special magnetic field shielding chamber. In total, three experiments were conducted: (a) tardigrades in anhydrobiosis, (b) tardigrades entering anhydrobiosis and (c) tardigrades returning to active life. The obtained results clearly showed that even partial isolation from the geomagnetic field, that is, hypomagnetic conditions, has negative influence on anhydrobiotic abilities of both tested tardigrade species. In both species we observed lower survivability rate while entering anhydrobiosis, in anhydrobiotic state and returning to the active state. What is more, we observed a higher mortality rate in Ech. testudo than Mil. inceptum which suggest that different species response to the hypomagnetic conditions in different way. In conclusion, while current knowledge on the influence of hypomagnetic conditions on mortality of invertebrates is very limited, our results suggest that the presence of the magnetic field is a very important factor which should be considered in further research focused on potential survival of Earth organisms in outer space, spacecrafts or different planets and moons.

3.
PLoS One ; 12(9): e0183380, 2017.
Article in English | MEDLINE | ID: mdl-28886031

ABSTRACT

Earth's geomagnetic field has undergone critical changes in the past. Studies on the influence of the magnetic field on Earth's organisms are crucial for the understanding of evolution of life on Earth and astrobiological considerations. Numerous studies conducted both on plants and animals confirmed the significant influence of the geomagnetic field on the metabolism of living organisms. Water bears (Tardigrada), which are a mong the most resistant animals due to their cryptobiotic abilities, show significant resistance to a number of environmental stressors, but the influence of the geomagnetic field on their fitness has not been addressed before. In our studies, we used eutardigrade Hypsibius dujardini to analyse whether isolation from the geomagnetic field had an effect on mortality. We found that Hypsibius dujardini specimens demonstrated relatively high mortality during anhydrobiosis, also in control groups exposed to the normal geomagnetic field. Moreover, similar mortality was observed in anhydrobiotic specimens isolated from the geomagnetic field. However, a significant difference was noted between tardigrade survival and the moment of their isolation from the geomagnetic field. In particular, tardigrade mortality substantially increased in absence of a magnetic field during the process of entering anhydrobiosis and returning to active life. Our results suggest that these processes rely on complex metabolic processes that are critically influenced by the geomagnetic field.


Subject(s)
Environment , Magnetic Fields , Tardigrada/physiology , Animals
4.
J Nanopart Res ; 17(10): 399, 2015.
Article in English | MEDLINE | ID: mdl-26457061

ABSTRACT

Multifunctional nanoparticles exhibiting red or green luminescence properties and magnetism were synthesized and thoroughly analyzed. The hydrothermal method was used for the synthesis of Eu3+- or Tb3+-doped GdF3-, NaGdF4-, and BaGdF5-based nanocrystalline materials. The X-ray diffraction patterns of the samples confirmed the desired compositions of the materials. Transmission electron microscope images revealed the different morphologies of the products, including the nanocrystal sizes, which varied from 12 nm in the case of BaGdF5-based nanoparticles to larger structures with dimensions exceeding 300 nm. All of the samples presented luminescence under ultraviolet irradiation, as well as when the samples were in the form of water colloids. The highest luminescence was observed for BaGdF5-based materials. The obtained nanoparticles exhibited paramagnetism along with probable evidence of superparamagnetic behavior at low temperatures. The particles' magnetic characteristics were also preserved for samples in the form of a suspension in distilled water. The cytotoxicity studies against the human erythrocytes indicated that the synthesized nanoparticles are non-toxic because they did not cause the red blood cells shape changes nor did they alter their membrane structure and permeabilization.

5.
Inorg Chem ; 53(23): 12243-52, 2014 Dec 01.
Article in English | MEDLINE | ID: mdl-25383487

ABSTRACT

New interesting aspects of the spectroscopic properties, magnetism, and method of synthesis of gadolinium orthovanadates doped with Eu(3+) ions are discussed. Gd(1-x)Eu(x)VO4 (x = 0, 0.05, 0.2) bifunctional luminescent materials with complex magnetic properties were synthesized by a microwave-assisted hydrothermal method. Products were formed in situ without previous precipitation. The crystal structures and morphologies of the obtained nanomaterials were analyzed by X-ray diffraction and transmission and scanning electron microscopy. Crystallographic data were analyzed using Rietveld refinement. The products obtained were nanocrystalline with average grain sizes of 70-80 nm. The qualitative and quantitative elemental composition as well as mapping of the nanocrystals was proved using energy-dispersive X-ray spectroscopy. The spectroscopic properties of red-emitting nanophosphors were characterized by their excitation and emission spectra and luminescence decays. Magnetic measurements were performed by means of vibrating sample magnetometry. GdVO4 and Gd0.8Eu0.2VO4 exhibited paramagnetic behavior with a weak influence of antiferromagnetic couplings between rare-earth ions. In the substituted sample, an additional magnetic contribution connected with the population of low-lying excited states of europium was observed.


Subject(s)
Europium/chemistry , Gadolinium/chemistry , Metal Nanoparticles , Vanadates/chemical synthesis , Magnetic Phenomena , Microscopy, Electron, Scanning , Temperature , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...