Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Front Neurosci ; 17: 1220010, 2023.
Article in English | MEDLINE | ID: mdl-37457016

ABSTRACT

Autosomal recessive primary microcephaly (MCPH) is a constellation of disorders that share significant brain size reduction and mild to moderate intellectual disability, which may be accompanied by a large variety of more invalidating clinical signs. Extensive neural progenitor cells (NPC) proliferation and differentiation are essential to determine brain final size. Accordingly, the 30 MCPH loci mapped so far (MCPH1-MCPH30) encode for proteins involved in microtubule and spindle organization, centriole biogenesis, nuclear envelope, DNA replication and repair, underscoring that a wide variety of cellular processes is required for sustaining NPC expansion during development. Current models propose that altered balance between symmetric and asymmetric division, as well as premature differentiation, are the main mechanisms leading to MCPH. Although studies of cellular alterations in microcephaly models have constantly shown the co-existence of high DNA damage and apoptosis levels, these mechanisms are less considered as primary factors. In this review we highlight how the molecular and cellular events produced by mutation of the majority of MCPH genes may converge on apoptotic death of NPCs and neurons, via TP53 activation. We propose that these mechanisms should be more carefully considered in the alterations of the sophisticated equilibrium between proliferation, differentiation and death produced by MCPH gene mutations. In consideration of the potential druggability of cell apoptotic pathways, a better understanding of their role in MCPH may significantly facilitate the development of translational approaches.

2.
Front Oncol ; 13: 1202585, 2023.
Article in English | MEDLINE | ID: mdl-37404750

ABSTRACT

Introduction: Medulloblastoma (MB), the most common malignant pediatric brain tumor, is currently treated with surgery followed by radiation and chemotherapy, which is accompanied by severe side effects, raising the need for innovative therapies. Disruption of the microcephaly-related gene Citron kinase (CITK) impairs the expansion of xenograft models as well as spontaneous MB arising in transgenic mice. No specific CITK inhibitors are available. Methods: Lestaurtinib, a Staurosporine derivative also known as CEP-701, inhibits CITK with IC50 of 90 nM. We therefore tested the biological effects of this molecule on different MB cell lines, as well as in vivo, injecting the drug in MBs arising in SmoA1 transgenic mice. Results: Similar to CITK knockdown, treatment of MB cells with 100 nM Lestaurtinib reduces phospho-INCENP levels at the midbody and leads to late cytokinesis failure. Moreover, Lestaurtinib impairs cell proliferation through CITK-sensitive mechanisms. These phenotypes are accompanied by accumulation of DNA double strand breaks, cell cycle block and TP53 superfamily activation in vitro and in vivo. Lestaurtinib treatment reduces tumor growth and increases mice survival. Discussion: Our data indicate that Lestaurtinib produces in MB cells poly-pharmacological effects extending beyond the inhibition of its validated targets, supporting the possibility of repositioning this drug for MB treatment.

3.
Cell Death Dis ; 12(11): 956, 2021 10 18.
Article in English | MEDLINE | ID: mdl-34663805

ABSTRACT

Medulloblastoma (MB) and gliomas are the most frequent high-grade brain tumors (HGBT) in children and adulthood, respectively. The general treatment for these tumors consists in surgery, followed by radiotherapy and chemotherapy. Despite the improvement in patient survival, these therapies are only partially effective, and many patients still die. In the last decades, microtubules have emerged as interesting molecular targets for HGBT, as various microtubule targeting agents (MTAs) have been developed and tested pre-clinically and clinically with encouraging results. Nevertheless, these treatments produce relevant side effects since they target microtubules in normal as well as in cancerous cells. A possible strategy to overcome this toxicity could be to target proteins that control microtubule dynamics but are required by HGBT cells much more than in normal cell types. The genes mutated in primary hereditary microcephaly (MCPH) are ubiquitously expressed in proliferating cells, but under normal conditions are selectively required during brain development, in neural progenitors. There is evidence that MB and glioma cells share molecular profiles with progenitors of cerebellar granules and of cortical radial glia cells, in which MCPH gene functions are fundamental. Moreover, several studies indicate that MCPH genes are required for HGBT expansion. Among the 25 known MCPH genes, we focus this review on KNL1, ASPM, CENPE, CITK and KIF14, which have been found to control microtubule stability during cell division. We summarize the current knowledge about the molecular basis of their interaction with microtubules. Moreover, we will discuss data that suggest these genes are promising candidates as HGBT-specific targets.


Subject(s)
Brain Neoplasms/genetics , Brain Neoplasms/therapy , Microcephaly/genetics , Microtubules/metabolism , Animals , Apoptosis , Brain Neoplasms/pathology , Clinical Trials as Topic , Cytokinesis , Humans , Microcephaly/pathology
4.
J Cell Sci ; 134(11)2021 06 01.
Article in English | MEDLINE | ID: mdl-34100550

ABSTRACT

Goldberg-Shprintzen disease (GOSHS) is a rare microcephaly syndrome accompanied by intellectual disability, dysmorphic facial features, peripheral neuropathy and Hirschsprung disease. It is associated with recessive mutations in the gene encoding kinesin family member 1-binding protein (KIF1BP, also known as KIFBP). The encoded protein regulates axon microtubules dynamics, kinesin attachment and mitochondrial biogenesis, but it is not clear how its loss could lead to microcephaly. We identified KIF1BP in the interactome of citron kinase (CITK, also known as CIT), a protein produced by the primary hereditary microcephaly 17 (MCPH17) gene. KIF1BP and CITK interact under physiological conditions in mitotic cells. Similar to CITK, KIF1BP is enriched at the midbody ring and is required for cytokinesis. The association between KIF1BP and CITK can be influenced by CITK activity, and the two proteins may antagonize each other for their midbody localization. KIF1BP knockdown decreases microtubule stability, increases KIF23 midbody levels and impairs midbody localization of KIF14, as well as of chromosome passenger complex. These data indicate that KIF1BP is a CITK interactor involved in midbody maturation and abscission, and suggest that cytokinesis failure may contribute to the microcephaly phenotype observed in GOSHS.


Subject(s)
Craniofacial Abnormalities , Hirschsprung Disease , Cytokinesis/genetics , HeLa Cells , Humans , Spindle Apparatus
5.
Cancers (Basel) ; 13(5)2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33804489

ABSTRACT

Medulloblastoma (MB) is the most frequent brain tumor in children. The standard treatment consists in surgery, followed by radiotherapy and chemotherapy. These therapies are only partially effective since many patients still die and those who survive suffer from neurological and endocrine disorders. Therefore, more effective therapies are needed. Primary microcephaly (MCPH) is a rare disorder caused by mutations in 25 different genes. Centromere-associated protein E (CENPE) heterozygous mutations cause the MCPH13 syndrome. As for other MCPH genes, CENPE is required for normal proliferation and survival of neural progenitors. Since there is evidence that MB shares many molecular features with neural progenitors, we hypothesized that CENPE could be an effective target for MB treatment. In ONS-76 and DAOY cells, CENPE knockdown induced mitotic defects and apoptosis. Moreover, CENPE depletion induced endogenous DNA damage accumulation, activating TP53 or TP73 as well as cell death signaling pathways. To consolidate CENPE as a target for MB treatment, we tested GSK923295, an allosteric inhibitor already in clinical trial for other cancer types. GSK923295, induced effects similar to CENPE depletion with higher penetrance, at low nM levels, suggesting that CENPE's inhibition could be a therapeutic strategy for MB treatment.

6.
Front Oncol ; 10: 1665, 2020.
Article in English | MEDLINE | ID: mdl-32974206

ABSTRACT

Glioblastoma (GBM) is the most devastating and least treatable brain tumor with median survival <15 months and extremely high recurrence rates. Promising results of immune checkpoint blockade obtained from pre-clinical studies in mice did not translate to clinic, and new strategies are urgently needed, particularly those targeting GBM stem cells (GSCs) that are held responsible for drug resistance and tumor recurrence. Patient-derived GSC cultures are critical for finding effective brain tumor therapies. Here, we investigated the ability of the recently described monoclonal antibody Nilo1 to specifically recognize GSCs isolated from GBM surgical samples. We employed five patient-derived GSC cultures with different stemness marker expression and differentiation potential, able to recapitulate original tumors when xenotransplanted in vivo. To answer whether Nilo1 has any functional effects in patient-derived GSCs lines, we treated the cells with Nilo1 in vitro and analyzed cell proliferation, cell cycle, apoptosis, sphere formation, as well as the expression of stem vs. differentiation markers. All tested GSCs stained positively for Nilo1, and the ability of Nilo1 to recognize GSCs strongly relied on their stem-like phenotype. Our results showed that a subset of patient-derived GSCs were sensitive to Nilo1 treatment. In three GSC lines Nilo1 triggered differentiation accompanied by the induction of p21. Most strikingly, in one GSC line Nilo1 completely abrogated self-renewal and led to Bax-associated apoptosis. Our data suggest that Nilo1 targets a molecule functionally relevant for stemness maintenance and pinpoint Nilo1 as a novel antibody-based therapeutical strategy to be used either alone or in combination with cytotoxic drugs for GSC targeting. Further pre-clinical studies are needed to validate the effectiveness of GSC-specific Nilo1 targeting in vivo.

7.
Cancers (Basel) ; 12(3)2020 Feb 26.
Article in English | MEDLINE | ID: mdl-32111106

ABSTRACT

Medulloblastoma (MB) is the most common malignant brain tumor in children, and it is classified into four biological subgroups: WNT, Sonic Hedgehog (SHH), Group 3 and Group 4. The current treatment is surgery, followed by irradiation and chemotherapy. Unfortunately, these therapies are only partially effective. Citron kinase protein (CITK) has been proposed as a promising target for SHH MB, whose inactivation leads to DNA damage and apoptosis. D283 and D341 cell lines (Group 3/Group 4 MB) were silenced with established siRNA sequences against CITK, to assess the direct effects of its loss. Next, D283, D341, ONS-76 and DAOY cells were treated with ionizing radiation (IR) or cisplatin in combination with CITK knockdown. CITK depletion impaired proliferation and induced cytokinesis failure and apoptosis of G3/G4 MB cell lines. Furthermore, CITK knockdown produced an accumulation of DNA damage, with reduced RAD51 nuclear levels. Association of IR or cisplatin with CITK depletion strongly impaired the growth potential of all tested MB cells. These results indicate that CITK inactivation could prevent the expansion of G3/G4 MB and increase their sensitivity to DNA-damaging agents, by impairing homologous recombination. We suggest that CITK inhibition could be broadly associated with IR and adjuvant therapy in MB treatment.

SELECTION OF CITATIONS
SEARCH DETAIL
...