Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
Add more filters










Publication year range
1.
Mater Horiz ; 11(10): 2372-2381, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38506727

ABSTRACT

The oxygen diffusion rate in hafnia (HfO2)-based resistive memory plays a pivotal role in enabling nonvolatile data retention. However, the information retention times obtained in HfO2 resistive memory devices are many times higher than the expected values obtained from oxygen diffusion measurements in HfO2 materials. In this study, we resolve this discrepancy by conducting oxygen isotope tracer diffusion measurements in amorphous hafnia (a-HfO2) thin films. Our results show that the oxygen tracer diffusion in amorphous HfO2 films is orders of magnitude lower than that of previous measurements on monoclinic hafnia (m-HfO2) pellets. Moreover, oxygen tracer diffusion is much lower in denser a-HfO2 films deposited by atomic layer deposition (ALD) than in less dense a-HfO2 films deposited by sputtering. The ALD films yield similar oxygen diffusion times as experimentally measured device retention times, reconciling this discrepancy between oxygen diffusion and retention time measurements. More broadly, our work shows how processing conditions can be used to control oxygen transport characteristics in amorphous materials without long-range crystal order.

2.
Sci Adv ; 10(8): eadj0758, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38381831

ABSTRACT

Isotope effects have received increasing attention in materials science and engineering because altering isotopes directly affects phonons, which can affect both thermal properties and optoelectronic properties of conventional semiconductors. However, how isotopic mass affects the optoelectronic properties in 2D semiconductors remains unclear because of measurement uncertainties resulting from sample heterogeneities. Here, we report an anomalous optical bandgap energy red shift of 13 (±7) milli-electron volts as mass of Mo isotopes is increased in laterally structured 100MoS2-92MoS2 monolayers grown by a two-step chemical vapor deposition that mitigates the effects of heterogeneities. This trend, which is opposite to that observed in conventional semiconductors, is explained by many-body perturbation and time-dependent density functional theories that reveal unusually large exciton binding energy renormalizations exceeding the ground-state renormalization energy due to strong coupling between confined excitons and phonons. The isotope effect on the optical bandgap reported here provides perspective on the important role of exciton-phonon coupling in the physical properties of two-dimensional materials.

3.
Nat Commun ; 14(1): 8260, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38086839

ABSTRACT

Metabolic reprogramming in cancer and immune cells occurs to support their increasing energy needs in biological tissues. Here we propose Single Cell Spatially resolved Metabolic (scSpaMet) framework for joint protein-metabolite profiling of single immune and cancer cells in male human tissues by incorporating untargeted spatial metabolomics and targeted multiplexed protein imaging in a single pipeline. We utilized the scSpaMet to profile cell types and spatial metabolomic maps of 19507, 31156, and 8215 single cells in human lung cancer, tonsil, and endometrium tissues, respectively. The scSpaMet analysis revealed cell type-dependent metabolite profiles and local metabolite competition of neighboring single cells in human tissues. Deep learning-based joint embedding revealed unique metabolite states within cell types. Trajectory inference showed metabolic patterns along cell differentiation paths. Here we show scSpaMet's ability to quantify and visualize the cell-type specific and spatially resolved metabolic-protein mapping as an emerging tool for systems-level understanding of tissue biology.


Subject(s)
Lung Neoplasms , Metabolomics , Female , Male , Humans , Metabolomics/methods , Systems Biology
4.
Environ Sci Technol ; 57(40): 14929-14937, 2023 10 10.
Article in English | MEDLINE | ID: mdl-37737106

ABSTRACT

It has been proposed to use magnesium oxide (MgO) to separate carbon dioxide directly from the atmosphere at the gigaton level. We show experimental results on MgO single crystals reacting with the atmosphere for longer (decades) and shorter (days to months) periods with the goal of gauging reaction rates. Here, we find a substantial slowdown of an initially fast reaction as a result of mineral armoring by reaction products (surface passivation). In short-term experiments, we observe fast hydroxylation, carbonation, and formation of amorphous hydrated magnesium carbonate at early stages, leading to the formation of crystalline hydrated Mg carbonates. The preferential location of Mg carbonates along the atomic steps on the crystal surface of MgO indicates the importance of the reactive site density for carbonation kinetics. The analysis of 27-year-old single-crystal MgO samples demonstrates that the thickness of the reacted layer is limited to ∼1.5 µm on average, which is thinner than expected and indicates surface passivation. Thus, if MgO is to be employed for direct air capture of CO2, surface passivation must be circumvented.


Subject(s)
Carbon Dioxide , Magnesium Oxide , Magnesium Oxide/chemistry , Carbon Dioxide/chemistry , Minerals , Carbonates/chemistry
6.
Astrobiology ; 23(9): 936-950, 2023 09.
Article in English | MEDLINE | ID: mdl-37459147

ABSTRACT

The ability to detect and map lipids, including potential lipid biomarkers, within a sedimentary matrix using mass spectrometry (MS) imaging may be critical to determine whether potential lipids detected in samples returned from Mars are indigenous to Mars or are contaminants. Here, we use gas chromatography-mass spectrometry (GC-MS) and time-of-flight-secondary ion mass spectrometry (ToF-SIMS) datasets collected from an organic-rich, thermally immature Jurassic geologic sample to constrain MS imaging analysis of indigenous lipid biomarkers in geologic samples. GC-MS data show that the extractable fractions are dominated by C27-C30 steranes and sterenes as well as isorenieratene derivatives. ToF-SIMS spectra from organic matter-rich laminae contain a strong, spatially restricted signal for ions m/z 370.3, m/z 372.3, and m/z 386.3, which we assign to C27 sterenes, cholestane (C27), and 4- or 24-methyl steranes (C28), respectively, as well as characteristic fragment ions of isorenieratene derivatives, including m/z 133.1, m/z 171.1, and m/z 237.1. We observed individual steroid spatial heterogeneity at the scale of tens to hundreds of microns. The fine-scale heterogeneity observed implies that indigenous lipid biomarkers concentrated within specific regions may be detectable via ToF-SIMS in samples with even low amounts of organic carbon, including in samples returned from Mars.


Subject(s)
Lipids , Spectrometry, Mass, Secondary Ion , Spectrometry, Mass, Secondary Ion/methods , Biomarkers , Lipids/analysis , Ions
7.
ACS Appl Mater Interfaces ; 15(30): 36856-36865, 2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37474250

ABSTRACT

Moving toward a future of efficient, accessible, and less carbon-reliant energy devices has been at the forefront of energy research innovations for the past 30 years. Metal-halide perovskite (MHP) thin films have gained significant attention due to their flexibility of device applications and tunable capabilities for improving power conversion efficiency. Serving as a gateway to optimize device performance, consideration must be given to chemical synthesis processing techniques. Therefore, how does common substrate processing techniques influence the behavior of MHP phenomena such as ion migration and strain? Here, we demonstrate how a hybrid approach of chemical bath deposition (CBD) and nanoparticle SnO2 substrate processing significantly improves the performance of (FAPbI3)0.97(MAPbBr3)0.03 by reducing micro-strain in the SnO2 lattice, allowing distribution of K+ from K-Cl treatment of substrates to passivate defects formed at the interface and produce higher current in light and dark environments. X-ray diffraction reveals differences in lattice strain behavior with respect to SnO2 substrate processing methods. Through use of conductive atomic force microscopy (c-AFM), conductivity is measured spatially with MHP morphology, showing higher generation of current in both light and dark conditions for films with hybrid processing. Additionally, time-of-flight secondary ionization mass spectrometry (ToF-SIMS) observed the distribution of K+ at the perovskite/SnO2 interface, indicating K+ passivation of defects to improve the power conversion efficiency (PCE) and device stability. We show how understanding the role of ion distribution at the SnO2 and perovskite interface can help reduce the creating of defects and promote a more efficient MHP device.

8.
Nature ; 615(7951): 237-243, 2023 03.
Article in English | MEDLINE | ID: mdl-36813969

ABSTRACT

The Jahn-Teller effect, in which electronic configurations with energetically degenerate orbitals induce lattice distortions to lift this degeneracy, has a key role in many symmetry-lowering crystal deformations1. Lattices of Jahn-Teller ions can induce a cooperative distortion, as exemplified by LaMnO3 (refs. 2,3). Although many examples occur in octahedrally4 or tetrahedrally5 coordinated transition metal oxides due to their high orbital degeneracy, this effect has yet to be manifested for square-planar anion coordination, as found in infinite-layer copper6,7, nickel8,9, iron10,11 and manganese oxides12. Here we synthesize single-crystal CaCoO2 thin films by topotactic reduction of the brownmillerite CaCoO2.5 phase. We observe a markedly distorted infinite-layer structure, with ångström-scale displacements of the cations from their high-symmetry positions. This can be understood to originate from the Jahn-Teller degeneracy of the dxz and dyz orbitals in the d7 electronic configuration along with substantial ligand-transition metal mixing. A complex pattern of distortions arises in a [Formula: see text] tetragonal supercell, reflecting the competition between an ordered Jahn-Teller effect on the CoO2 sublattice and the geometric frustration of the associated displacements of the Ca sublattice, which are strongly coupled in the absence of apical oxygen. As a result of this competition, the CaCoO2 structure forms an extended two-in-two-out type of Co distortion following 'ice rules'13.

10.
Quant Plant Biol ; 3: e31, 2022.
Article in English | MEDLINE | ID: mdl-37077971

ABSTRACT

Spatial heterogeneity in composition and organisation of the primary cell wall affects the mechanics of cellular morphogenesis. However, directly correlating cell wall composition, organisation and mechanics has been challenging. To overcome this barrier, we applied atomic force microscopy coupled with infrared (AFM-IR) spectroscopy to generate spatially correlated maps of chemical and mechanical properties for paraformaldehyde-fixed, intact Arabidopsis thaliana epidermal cell walls. AFM-IR spectra were deconvoluted by non-negative matrix factorisation (NMF) into a linear combination of IR spectral factors representing sets of chemical groups comprising different cell wall components. This approach enables quantification of chemical composition from IR spectral signatures and visualisation of chemical heterogeneity at nanometer resolution. Cross-correlation analysis of the spatial distribution of NMFs and mechanical properties suggests that the carbohydrate composition of cell wall junctions correlates with increased local stiffness. Together, our work establishes new methodology to use AFM-IR for the mechanochemical analysis of intact plant primary cell walls.

11.
ACS Nano ; 15(12): 20391-20402, 2021 Dec 28.
Article in English | MEDLINE | ID: mdl-34846843

ABSTRACT

The optoelectronic performance of organic-inorganic halide perovskite (OIHP)-based devices has been improved in recent years. Particularly, solar cells fabricated using mixed-cations and mixed-halides have outperformed their single-cation and single-halide counterparts. Yet, a systematic evaluation of the microstructural behavior of mixed perovskites is missing despite their known composition-dependent photoinstability. Here, we explore microstructural inhomogeneity in (FAPbI3)x(MAPbBr3)1-x using advanced scanning probe microscopy techniques. Contact potential difference (CPD) maps measured by Kelvin probe force microscopy show an increased fraction of grains exhibiting a low CPD with flat topography as MAPbBr3 concentration is increased. The higher portion of low CPD contributes to asymmetric CPD distribution curves. Chemical analysis reveals these grains being rich in MA, Pb, and I. The composition-dependent phase segregation upon illumination, reflected on the emergence of a low-energy peak emission in the original photoluminescence spectra, arises from the formation of such grains with flat topology. Bias-dependent piezo-response force microscopy measurements, in these grains, further confirm vigorous ion migration and cause a hysteretic piezo-response. Our results, therefore, provide insights into the microstructural evaluation of phase segregation and ion migration in OIHPs pointing toward process optimization as a mean to further enhance their optoelectronic performance.

12.
Anal Chem ; 93(48): 15949-15957, 2021 12 07.
Article in English | MEDLINE | ID: mdl-34793141

ABSTRACT

The study of lipid molecular fossils by traditional biomarker analysis requires bulk sample crushing, followed by solvent extraction, and then the analysis of the extract by gas chromatography-mass spectrometry (GC-MS). This traditional analysis mixes all organic compounds in the sample regardless of their origins, with a loss of information on the spatial distribution of organic molecules within the sample. These shortcomings can be overcome using the chemical mapping of intact samples. Spectroscopic techniques such as UV fluorescence or Raman spectroscopy, laser ablation inductively coupled plasma mass spectrometry, and time-of-flight secondary ion mass spectrometry (ToF-SIMS) are among those elemental and molecular mapping techniques. This study employed femtosecond (fs) laser ablation combined with single-photon ionization, a method called fs-laser desorption postionization mass spectrometry (fs-LDPI-MS). A pulsed ∼75 fs, 800 nm laser was used to ablate the geological sample, which was then photoionized after a few microseconds by a pulsed 7.9 eV vacuum ultraviolet laser. An organic carbon-rich geological sample was used for this study to map hydrocarbon biomarkers in sediments that were previously studied by GC-MS. The petrography of this sample was examined by optical and fluorescence microscopy. It is demonstrated here that fs-LDPI-MS combined with petrography for multimodal imaging can expose buried compounds within the sample via in situ layer removal. When used in conjunction with traditional organic geochemical analysis, this method has the potential to determine the spatial distribution of organic biomarkers in geological material. Finally, fs-LDPI-MS imaging data are compared with ToF-SIMS imaging that is commonly used for such studies.


Subject(s)
Lasers , Spectrometry, Mass, Secondary Ion , Biomarkers , Diagnostic Imaging , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
13.
ACS Nano ; 15(5): 9017-9026, 2021 May 25.
Article in English | MEDLINE | ID: mdl-33955732

ABSTRACT

Ion migration is one of the most debated mechanisms and credited with multiple observed phenomena and performance in metal halide perovskites (MHPs) semiconductor devices. However, to date, the migration of ions and their effects on MHPs are not still fully understood, largely due to a lack of direct observations of temporal ion migration. In this work, using direct observation of ion migration in-operando, we observe the hysteretic migration behavior of intrinsic ions (i.e., CH3NH3+ and I-) as well as reveal the migration behavior of CH3NH3+ decomposition ions. We find that CH3NH3+ decomposition products can be affected by light and accumulate at the interfaces under bias. These MHP decomposition products are tightly related to the device performance and stability. Complementary results of time-resolved Kelvin probe force microscopy (tr-KPFM) demonstrate a correlation between dynamics of these interfacial ions and charge carriers. Overall, we find that there are a number of mobile ions including CH3NH3+ decomposition products in MHPs that need to be taken into account when measuring MHP device responses (e.g., charge dynamics) and should be considered in future optimization studies of MHP semiconductor devices.

14.
ACS Appl Mater Interfaces ; 13(15): 17971-17977, 2021 Apr 21.
Article in English | MEDLINE | ID: mdl-33822581

ABSTRACT

Magnetic insulators are important materials for a range of next-generation memory and spintronic applications. Structural constraints in this class of devices generally require a clean heterointerface that allows effective magnetic coupling between the insulating layer and the conducting layer. However, there are relatively few examples of magnetic insulators that can be synthesized with surface qualities that would allow these smooth interfaces and precisely tuned interfacial magnetic exchange coupling, which might be applicable at room temperature. In this work, we demonstrate an example of how the configurational complexity in the magnetic insulator layer can be used to realize these properties. The entropy-assisted synthesis is used to create single-crystal (Mg0.2Ni0.2Fe0.2Co0.2Cu0.2)Fe2O4 films on substrates spanning a range of strain states. These films show smooth surfaces, high resistivity, and strong magnetic responses at room temperature. Local and global magnetic measurements further demonstrate how strain can be used to manipulate the magnetic texture and anisotropy. These findings provide insight into how precise magnetic responses can be designed using compositionally complex materials that may find application in next-generation magnetic devices.

15.
Adv Sci (Weinh) ; 7(19): 2001176, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33042744

ABSTRACT

The gap in understanding how underlying chemical dynamics impact the functionality of metal halide perovskites (MHPs) leads to the controversy about the origin of many phenomena associated with ion migration in MHPs. In particular, the debate regarding the impact of ion migration on current-voltage (I-V) hysteresis of MHPs devices has lasted for many years, where the difficulty lies in directly uncovering the chemical dynamics, as well as identifying and separating the impact of specific ions. In this work, using a newly developed time-resolved time-of-flight secondary ion mass spectrometry CH3NH3 + and I- migrations in CH3NH3PbI3 are directly observed, revealing hysteretic CH3NH3 + and I- migrations. Additionally, hysteretic CH3NH3 + migration is illumination-dependent. Correlating these results with the I-V characterization, this work uncovers that CH3NH3 + redistribution can induce a remanent field leading to a spontaneous current in the device. It unveils that the CH3NH3 + migration is responsible for the illumination-associated I-V hysteresis in MHPs. Hysteretic ion migration has not been uncovered and the contribution of any ions (e.g., CH3NH3 +) has not been specified before. Such insightful and detailed information has up to now been missing, which is critical to improving MHPs photovoltaic performance and developing MHPs-based memristors and synaptic devices.

18.
Adv Mater ; 31(35): e1902618, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31293012

ABSTRACT

Optoelectronic devices based on metal halide perovskites, including solar cells and light-emitting diodes, have attracted tremendous research attention globally in the last decade. Due to their potential to achieve high carrier mobilities, organic-inorganic hybrid perovskite materials can enable high-performance, solution-processed field-effect transistors (FETs) for next-generation, low-cost, flexible electronic circuits and displays. However, the performance of perovskite FETs is hampered predominantly by device instabilities, whose origin remains poorly understood. Here, perovskite single-crystal FETs based on methylammonium lead bromide are studied and device instabilities due to electrochemical reactions at the interface between the perovskite and gold source-drain top contacts are investigated. Despite forming the contacts by a gentle, soft lamination method, evidence is found that even at such "ideal" interfaces, a defective, intermixed layer is formed at the interface upon biasing of the device. Using a bottom-contact, bottom-gate architecture, it is shown that it is possible to minimize such a reaction through a chemical modification of the electrodes, and this enables fabrication of perovskite single-crystal FETs with high mobility of up to ≈15 cm2 V-1 s-1 at 80 K. This work addresses one of the key challenges toward the realization of high-performance solution-processed perovskite FETs.

19.
Nat Commun ; 10(1): 3064, 2019 Jul 11.
Article in English | MEDLINE | ID: mdl-31296880

ABSTRACT

The unique properties of ferroelectric materials enable a plethora of applications, which are hindered by the phenomenon known as ferroelectric fatigue that leads to the degradation of ferroelectric properties with polarization cycling. Multiple microscopic models explaining fatigue have been suggested; however, the chemical origins remain poorly understood. Here, we utilize multimodal chemical imaging that combines atomic force microscopy with time-of-flight secondary mass spectrometry to explore the chemical phenomena associated with fatigue in PbZr0.2Ti0.8O3 (PZT) thin films. Investigations reveal that the degradation of ferroelectric properties is correlated with a local chemical change and migration of electrode ions into the PZT structure. Density functional theory simulations support the experimental results and demonstrate stable doping of the thin surface PZT layer with copper ions, leading to a decrease in the spontaneous polarization. Overall, the performed research allows for the observation and understanding of the chemical phenomena associated with polarization cycling and their effects on ferroelectric functionality.

20.
Anal Chem ; 91(4): 2791-2796, 2019 02 19.
Article in English | MEDLINE | ID: mdl-30672686

ABSTRACT

Seed coatings improve germination and offer higher crop yields through a blend of active ingredients (such as insecticides and fungicides), polymers, waxes, fillers, and pigments. To reach their full potential, fundamental formulation challenges bridging structure and function need to be addressed. In some instances, during industrial-volume packing and transportation, coated seeds do not flow well through elevators, conveyers, and applicators, which may reduce yield and add cost. In this work, we illustrate a combinatorial chemical imaging approach to study seed coatings at the microscale to link chemical and physical properties responsible for low seed flowability. The local chemical composition was examined using time-of-flight secondary ion mass spectrometry (ToF-SIMS) and at comparable length scales, the local adhesive properties were examined using atomic force microscopy (AFM) force volume mapping. The link between the chemical and the adhesive properties was established by non-negative matrix factorization (NMF). The correlative multimodal imaging approach developed here utilizing AFM force volume mapping, ToF-SIMS chemical mapping, and data analytics offers a path for linking function with localized chemistry when investigating multicomponent soft material systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...