Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
mSphere ; 8(5): e0045123, 2023 10 24.
Article in English | MEDLINE | ID: mdl-37791774

ABSTRACT

Antibody responses to variant surface antigens (VSAs) produced by the malaria parasite Plasmodium falciparum may contribute to age-related natural immunity to severe malaria. One VSA family, P. falciparum erythrocyte membrane protein-1 (PfEMP1), includes a subset of proteins that binds endothelial protein C receptor (EPCR) in human hosts and potentially disrupts the regulation of inflammatory responses, which may lead to the development of severe malaria. We probed peptide microarrays containing segments spanning five PfEMP1 EPCR-binding domain variants with sera from 10 Malian adults and 10 children to determine the differences between adult and pediatric immune responses. We defined serorecognized peptides and amino acid residues as those that elicited a significantly higher antibody response than malaria-naïve controls. We aimed to identify regions consistently serorecognized among adults but not among children across PfEMP1 variants, potentially indicating regions that drive the development of immunity to severe malaria. Adult sera consistently demonstrated broader and more intense serologic responses to constitutive PfEMP1 peptides than pediatric sera, including peptides in EPCR-binding domains. Both adults and children serorecognized a significantly higher proportion of EPCR-binding peptides than peptides that do not directly participate in receptor binding, indicating a preferential development of serologic responses at functional residues. Over the course of a single malaria transmission season, pediatric serological responses increased between the start and the peak of the season, but waned as the transmission season ended. IMPORTANCE Severe malaria and death related to malaria disproportionately affect sub-Saharan children under 5 years of age, commonly manifesting as cerebral malaria and/or severe malarial anemia. In contrast, adults in malaria-endemic regions tend to experience asymptomatic or mild disease. Our findings indicate that natural immunity to malaria targets specific regions within the EPCR-binding domain, particularly peptides containing EPCR-binding residues. Epitopes containing these residues may be promising targets for vaccines or therapeutics directed against severe malaria. Our approach provides insight into the development of natural immunity to a binding target linked to severe malaria by characterizing an "adult-like" response as recognizing a proportion of epitopes within the PfEMP1 protein, particularly regions that mediate EPCR binding. This "adult-like" response likely requires multiple years of malaria exposure, as increases in pediatric serologic response over a single malaria transmission season do not appear significant.


Subject(s)
Malaria, Falciparum , Malaria , Adult , Child , Humans , Child, Preschool , Endothelial Protein C Receptor/metabolism , Protozoan Proteins/metabolism , Malaria, Falciparum/parasitology , Epitopes , Peptides
2.
Front Immunol ; 14: 1179314, 2023.
Article in English | MEDLINE | ID: mdl-37465667

ABSTRACT

Introduction: Host gene and protein expression impact susceptibility to clinical malaria, but the balance of immune cell populations, cytokines and genes that contributes to protection, remains incompletely understood. Little is known about the determinants of host susceptibility to clinical malaria at a time when acquired immunity is developing. Methods: We analyzed peripheral blood mononuclear cells (PBMCs) collected from children who differed in susceptibility to clinical malaria, all from a small town in Mali. PBMCs were collected from children aged 4-6 years at the start, peak and end of the malaria season. We characterized the immune cell composition and cytokine secretion for a subset of 20 children per timepoint (10 children with no symptomatic malaria age-matched to 10 children with >2 symptomatic malarial illnesses), and gene expression patterns for six children (three per cohort) per timepoint. Results: We observed differences between the two groups of children in the expression of genes related to cell death and inflammation; in particular, inflammatory genes such as CXCL10 and STAT1 and apoptotic genes such as XAF1 were upregulated in susceptible children before the transmission season began. We also noted higher frequency of HLA-DR+ CD4 T cells in protected children during the peak of the malaria season and comparable levels cytokine secretion after stimulation with malaria schizonts across all three time points. Conclusion: This study highlights the importance of baseline immune signatures in determining disease outcome. Our data suggests that differences in apoptotic and inflammatory gene expression patterns can serve as predictive markers of susceptibility to clinical malaria.


Subject(s)
Malaria, Falciparum , Malaria , Child , Humans , Leukocytes, Mononuclear , Malaria/genetics , Cytokines , Adaptive Immunity
3.
Gigascience ; 112022 11 21.
Article in English | MEDLINE | ID: mdl-36409836

ABSTRACT

The Common Fund Data Ecosystem (CFDE) has created a flexible system of data federation that enables researchers to discover datasets from across the US National Institutes of Health Common Fund without requiring that data owners move, reformat, or rehost those data. This system is centered on a catalog that integrates detailed descriptions of biomedical datasets from individual Common Fund Programs' Data Coordination Centers (DCCs) into a uniform metadata model that can then be indexed and searched from a centralized portal. This Crosscut Metadata Model (C2M2) supports the wide variety of data types and metadata terms used by individual DCCs and can readily describe nearly all forms of biomedical research data. We detail its use to ingest and index data from 11 DCCs.


Subject(s)
Ecosystem , Financial Management , Metadata
4.
J Immunol ; 207(8): 1965-1977, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34507950

ABSTRACT

Parasite-specific CD8 T cell responses play a key role in mediating immunity against Theileria parva in cattle (Bos taurus), and there is evidence that efficient induction of these responses requires CD4 T cell responses. However, information on the antigenic specificity of the CD4 T cell response is lacking. The current study used a high-throughput system for Ag identification using CD4 T cells from immune animals to screen a library of ∼40,000 synthetic peptides representing 499 T. parva gene products. Use of CD4 T cells from 12 immune cattle, representing 12 MHC class II types, identified 26 Ags. Unlike CD8 T cell responses, which are focused on a few dominant Ags, multiple Ags were recognized by CD4 T cell responses of individual animals. The Ags had diverse properties, but included proteins encoded by two multimember gene families: five haloacid dehalogenases and five subtelomere-encoded variable secreted proteins. Most Ags had predicted signal peptides and/or were encoded by abundantly transcribed genes, but neither parameter on their own was reliable for predicting antigenicity. Mapping of the epitopes confirmed presentation by DR or DQ class II alleles and comparison of available T. parva genome sequences demonstrated that they included both conserved and polymorphic epitopes. Immunization of animals with vaccine vectors expressing two of the Ags demonstrated induction of CD4 T cell responses capable of recognizing parasitized cells. The results of this study provide detailed insight into the CD4 T cell responses induced by T. parva and identify Ags suitable for use in vaccine development.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Protozoan Vaccines/immunology , Theileria parva/physiology , Theileriasis/immunology , Animals , Antigen Presentation , Antigens, Protozoan/immunology , Cattle , Cells, Cultured , Epitope Mapping , Epitopes, T-Lymphocyte/immunology , High-Throughput Screening Assays , Histocompatibility Antigens Class II , Lymphocyte Activation , Peptide Library , Peptides/chemical synthesis , Peptides/immunology , T-Cell Antigen Receptor Specificity
5.
Nucleic Acids Res ; 49(D1): D734-D742, 2021 01 08.
Article in English | MEDLINE | ID: mdl-33305317

ABSTRACT

The Human Microbiome Project (HMP) explored microbial communities of the human body in both healthy and disease states. Two phases of the HMP (HMP and iHMP) together generated >48TB of data (public and controlled access) from multiple, varied omics studies of both the microbiome and associated hosts. The Human Microbiome Project Data Coordination Center (HMPDACC) was established to provide a portal to access data and resources produced by the HMP. The HMPDACC provides a unified data repository, multi-faceted search functionality, analysis pipelines and standardized protocols to facilitate community use of HMP data. Recent efforts have been put toward making HMP data more findable, accessible, interoperable and reusable. HMPDACC resources are freely available at www.hmpdacc.org.


Subject(s)
Databases, Genetic , Microbiota , Humans , Internet , Search Engine
6.
Int J Parasitol ; 51(2-3): 123-136, 2021 02.
Article in English | MEDLINE | ID: mdl-33069745

ABSTRACT

Throughout their life cycle, Babesia parasites alternate between a mammalian host, where they cause babesiosis, and the tick vector. Transition between hosts results in distinct environmental signals that influence patterns of gene expression, consistent with the morphological and functional changes operating in the parasites during their life stages. In addition, comparing differential patterns of gene expression among mammalian and tick parasite stages can provide clues for developing improved methods of control. Hereby, we upgraded the genome assembly of Babesia bovis, a bovine hemoparasite, closing a 139 kbp gap, and used RNA-Seq datasets derived from mammalian blood and tick kinete stages to update the genome annotation. Of the originally annotated genes, 1,254 required structural changes, and 326 new genes were identified, leading to a different predicted proteome compared to the original annotation. Next, the RNA-Seq data was used to identify B. bovis genes that were differentially expressed in the vertebrate and arthropod hosts. In blood stages, 28% of the genes were upregulated up to 300 fold, whereas 26% of the genes in kinetes, a tick stage, were upregulated up to >19,000 fold. We thus discovered differentially expressed genes that may play key biological roles and serve as suitable targets for the development of vaccines to control bovine babesiosis.


Subject(s)
Babesia bovis , Babesia , Babesiosis , Cattle Diseases , Animals , Babesia/genetics , Babesia bovis/genetics , Cattle , Gene Expression , Life Cycle Stages
7.
J Infect Dis ; 223(11): 1943-1947, 2021 06 04.
Article in English | MEDLINE | ID: mdl-32992328

ABSTRACT

Circumsporozoite protein (CSP) coats the Plasmodium falciparum sporozoite surface and is a major malaria subunit vaccine target. We measured epitope-specific reactivity to field-derived CSP haplotypes in serum samples from Malian adults and children on a custom peptide microarray. Compared to children, adults showed greater antibody responses and responses to more variants in regions proximal to and within the central repeat region. Children acquired short-lived immunity to an epitope proximal to the central repeat region but not to the central repeat region itself. This approach has the potential to differentiate immunodominant from protective epitope-specific responses when combined with longitudinal infection data.


Subject(s)
Antibodies, Protozoan/immunology , Antibody Formation , Malaria Vaccines , Malaria, Falciparum , Adult , Child , Epitopes , Humans , Malaria Vaccines/immunology , Malaria, Falciparum/epidemiology , Malaria, Falciparum/prevention & control , Mali , Plasmodium falciparum/immunology , Protozoan Proteins/immunology , Vaccines, Subunit/immunology
8.
Data Brief ; 33: 106533, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33294524

ABSTRACT

Babesia bovis is a hemoprotozoan parasite of cattle that has a complex life cycle within vertebrate and invertebrate hosts. In the mammalian host, B. bovis undergoes asexual reproduction while in the tick midgut, gametes are induced, fuse, and form zygotes. The zygote infects tick gut epithelial cells and transform into kinetes that are released into the hemolymph and invade other tick tissues such as the ovaries, resulting in transovarial transmission to tick offspring. To compare gene regulation between different B. bovis life stages, we collected parasites infecting bovine erythrocytes and tick hemolymph. Total RNA samples were isolated, and multiplexed libraries sequenced using paired-end 100 cycle reads of a HiSeq 2500. The data was normalized using the TMM method and analysed for significant differential expression using the generalized linear model likelihood ratio test (GLM LRT) in edgeR. To validate our datasets, ten genes were selected using NormFinder. Genes that had no significant fold change between the blood and tick stages in the RNA-Seq datasets were tested by quantitative PCR to determine their suitability as "housekeeping" genes. The normalized RNA-Seq data revealed genes upregulated during infection of the mammalian host or tick vector and six upregulated genes were validated by quantitative PCR. These datasets can help identify useful targets for controlling bovine babesiosis.

9.
PLoS Negl Trop Dis ; 14(10): e0008781, 2020 10.
Article in English | MEDLINE | ID: mdl-33119590

ABSTRACT

Theileria parva is an economically important, intracellular, tick-transmitted parasite of cattle. A live vaccine against the parasite is effective against challenge from cattle-transmissible T. parva but not against genotypes originating from the African Cape buffalo, a major wildlife reservoir, prompting the need to characterize genome-wide variation within and between cattle- and buffalo-associated T. parva populations. Here, we describe a capture-based target enrichment approach that enables, for the first time, de novo assembly of nearly complete T. parva genomes derived from infected host cell lines. This approach has exceptionally high specificity and sensitivity and is successful for both cattle- and buffalo-derived T. parva parasites. De novo genome assemblies generated for cattle genotypes differ from the reference by ~54K single nucleotide polymorphisms (SNPs) throughout the 8.31 Mb genome, an average of 6.5 SNPs/kb. We report the first buffalo-derived T. parva genome, which is ~20 kb larger than the genome from the reference, cattle-derived, Muguga strain, and contains 25 new potential genes. The average non-synonymous nucleotide diversity (πN) per gene, between buffalo-derived T. parva and the Muguga strain, was 1.3%. This remarkably high level of genetic divergence is supported by an average Wright's fixation index (FST), genome-wide, of 0.44, reflecting a degree of genetic differentiation between cattle- and buffalo-derived T. parva parasites more commonly seen between, rather than within, species. These findings present clear implications for vaccine development, further demonstrated by the ability to assemble nearly all known antigens in the buffalo-derived strain, which will be critical in design of next generation vaccines. The DNA capture approach used provides a clear advantage in specificity over alternative T. parva DNA enrichment methods used previously, such as those that utilize schizont purification, is less labor intensive, and enables in-depth comparative genomics in this apicomplexan parasite.


Subject(s)
Buffaloes/parasitology , DNA, Protozoan/genetics , Genetic Variation , Theileria parva/genetics , Theileriasis/parasitology , Animals , Cattle , Genome, Protozoan , Genotype , Species Specificity , Theileria parva/classification , Theileria parva/isolation & purification
10.
BMC Genomics ; 21(1): 279, 2020 Apr 03.
Article in English | MEDLINE | ID: mdl-32245418

ABSTRACT

BACKGROUND: The apicomplexan parasite Theileria parva causes a livestock disease called East coast fever (ECF), with millions of animals at risk in sub-Saharan East and Southern Africa, the geographic distribution of T. parva. Over a million bovines die each year of ECF, with a tremendous economic burden to pastoralists in endemic countries. Comprehensive, accurate parasite genome annotation can facilitate the discovery of novel chemotherapeutic targets for disease treatment, as well as elucidate the biology of the parasite. However, genome annotation remains a significant challenge because of limitations in the quality and quantity of the data being used to inform the location and function of protein-coding genes and, when RNA data are used, the underlying biological complexity of the processes involved in gene expression. Here, we apply our recently published RNAseq dataset derived from the schizont life-cycle stage of T. parva to update structural and functional gene annotations across the entire nuclear genome. RESULTS: The re-annotation effort lead to evidence-supported updates in over half of all protein-coding sequence (CDS) predictions, including exon changes, gene merges and gene splitting, an increase in average CDS length of approximately 50 base pairs, and the identification of 128 new genes. Among the new genes identified were those involved in N-glycosylation, a process previously thought not to exist in this organism and a potentially new chemotherapeutic target pathway for treating ECF. Alternatively-spliced genes were identified, and antisense and multi-gene family transcription were extensively characterized. CONCLUSIONS: The process of re-annotation led to novel insights into the organization and expression profiles of protein-coding sequences in this parasite, and uncovered a minimal N-glycosylation pathway that changes our current understanding of the evolution of this post-translational modification in apicomplexan parasites.


Subject(s)
Molecular Sequence Annotation/methods , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Theileria parva/genetics , Alternative Splicing , Animals , Gene Regulatory Networks , Genome, Protozoan , Glycosylation , Livestock/parasitology , Sequence Analysis, RNA , Theileria parva/metabolism
11.
Sci Rep ; 6: 35284, 2016 10 18.
Article in English | MEDLINE | ID: mdl-27752055

ABSTRACT

Babesia microti, a tick-transmitted, intraerythrocytic protozoan parasite circulating mainly among small mammals, is the primary cause of human babesiosis. While most cases are transmitted by Ixodes ticks, the disease may also be transmitted through blood transfusion and perinatally. A comprehensive analysis of genome composition, genetic diversity, and gene expression profiling of seven B. microti isolates revealed that genetic variation in isolates from the Northeast United States is almost exclusively associated with genes encoding the surface proteome and secretome of the parasite. Furthermore, we found that polymorphism is restricted to a small number of genes, which are highly expressed during infection. In order to identify pathogen-encoded factors involved in host-parasite interactions, we screened a proteome array comprised of 174 B. microti proteins, including several predicted members of the parasite secretome. Using this immuno-proteomic approach we identified several novel antigens that trigger strong host immune responses during the onset of infection. The genomic and immunological data presented herein provide the first insights into the determinants of B. microti interaction with its mammalian hosts and their relevance for understanding the selective pressures acting on parasite evolution.


Subject(s)
Babesia microti/pathogenicity , Babesiosis/genetics , Polymorphism, Genetic , Proteomics , Animals , Babesia microti/genetics , Babesiosis/parasitology , Babesiosis/transmission , Gene Expression Regulation , Genome, Protozoan , Genomics , Host-Parasite Interactions/genetics , Humans , Ixodes/genetics , Ixodes/parasitology , Microarray Analysis , New England
12.
Pathog Dis ; 74(7)2016 10.
Article in English | MEDLINE | ID: mdl-27519257

ABSTRACT

Human cryptosporidiosis is caused primarily by Cryptosporidium hominis, C. parvum and C. meleagridis. To accelerate research on parasites in the genus Cryptosporidium, we generated annotated, draft genome sequences of human C. hominis isolates TU502_2012 and UKH1, C. meleagridis UKMEL1, also isolated from a human patient, and the avian parasite C. baileyi TAMU-09Q1. The annotation of the genome sequences relied in part on RNAseq data generated from the oocyst stage of both C. hominis and C. baileyi The genome assembly of C. hominis is significantly more complete and less fragmented than that available previously, which enabled the generation of a much-improved gene set for this species, with an increase in average gene length of 500 bp relative to the protein-encoding genes in the 2004 C. hominis annotation. Our results reveal that the genomes of C. hominis and C. parvum are very similar in both gene density and average gene length. These data should prove a valuable resource for the Cryptosporidium research community.


Subject(s)
Computational Biology/methods , Cryptosporidium/genetics , Genome, Protozoan , Genomics , Molecular Sequence Annotation , Cryptosporidium/classification , Gene Expression Profiling , Genomics/methods , High-Throughput Nucleotide Sequencing , Humans , Transcriptome
13.
Article in English | MEDLINE | ID: mdl-28095366

ABSTRACT

Human cryptosporidiosis, caused primarily by Cryptosporidium hominis and a subset of Cryptosporidium parvum, is a major cause of moderate-to-severe diarrhea in children under 5 years of age in developing countries and can lead to nutritional stunting and death. Cryptosporidiosis is particularly severe and potentially lethal in immunocompromised hosts. Biological and technical challenges have impeded traditional vaccinology approaches to identify novel targets for the development of vaccines against C. hominis, the predominant species associated with human disease. We deemed that the existence of genomic resources for multiple species in the genus, including a much-improved genome assembly and annotation for C. hominis, makes a reverse vaccinology approach feasible. To this end, we sought to generate a searchable online resource, termed C. hominis gene catalog, which registers all C. hominis genes and their properties relevant for the identification and prioritization of candidate vaccine antigens, including physical attributes, properties related to antigenic potential and expression data. Using bioinformatic approaches, we identified ∼400 C. hominis genes containing properties typical of surface-exposed antigens, such as predicted glycosylphosphatidylinositol (GPI)-anchor motifs, multiple transmembrane motifs and/or signal peptides targeting the encoded protein to the secretory pathway. This set can be narrowed further, e.g. by focusing on potential GPI-anchored proteins lacking homologs in the human genome, but with homologs in the other Cryptosporidium species for which genomic data are available, and with low amino acid polymorphism. Additional selection criteria related to recombinant expression and purification include minimizing predicted post-translation modifications and potential disulfide bonds. Forty proteins satisfying these criteria were selected from 3745 proteins in the updated C. hominis annotation. The immunogenic potential of a few of these is currently being tested.Database URL: http://cryptogc.igs.umaryland.edu.


Subject(s)
Antigens, Protozoan/genetics , Cryptosporidiosis/genetics , Cryptosporidium/genetics , Genome, Protozoan , Protozoan Vaccines/genetics , Animals , Cryptosporidiosis/prevention & control , Databases, Genetic , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...