Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 132024 May 09.
Article in English | MEDLINE | ID: mdl-38722021

ABSTRACT

Neural stem cells (NSCs) are multipotent and correct fate determination is crucial to guarantee brain formation and homeostasis. How NSCs are instructed to generate neuronal or glial progeny is not well understood. Here, we addressed how murine adult hippocampal NSC fate is regulated and described how scaffold attachment factor B (SAFB) blocks oligodendrocyte production to enable neuron generation. We found that SAFB prevents NSC expression of the transcription factor nuclear factor I/B (NFIB) by binding to sequences in the Nfib mRNA and enhancing Drosha-dependent cleavage of the transcripts. We show that increasing SAFB expression prevents oligodendrocyte production by multipotent adult NSCs, and conditional deletion of Safb increases NFIB expression and oligodendrocyte formation in the adult hippocampus. Our results provide novel insights into a mechanism that controls Drosha functions for selective regulation of NSC fate by modulating the post-transcriptional destabilization of Nfib mRNA in a lineage-specific manner.


Subject(s)
Hippocampus , NFI Transcription Factors , Neural Stem Cells , RNA, Messenger , Ribonuclease III , Animals , NFI Transcription Factors/metabolism , NFI Transcription Factors/genetics , Hippocampus/metabolism , Hippocampus/cytology , Ribonuclease III/metabolism , Ribonuclease III/genetics , Mice , Neural Stem Cells/metabolism , RNA, Messenger/metabolism , RNA, Messenger/genetics , Oligodendroglia/metabolism , RNA Stability , Cell Differentiation
2.
Nat Commun ; 6: 6551, 2015 Mar 20.
Article in English | MEDLINE | ID: mdl-25791062

ABSTRACT

Precise cleavage furrow positioning is required for faithful chromosome segregation and cell fate determinant distribution. In most metazoan cells, contractile ring placement is regulated by the mitotic spindle through the centralspindlin complex, and potentially also the chromosomal passenger complex (CPC). Drosophila neuroblasts, asymmetrically dividing neural stem cells, but also other cells utilize both spindle-dependent and spindle-independent cleavage furrow positioning pathways. However, the relative contribution of each pathway towards cytokinesis is currently unclear. Here we report that in Drosophila neuroblasts, the mitotic spindle, but not polarity cues, controls the localization of the CPC component Survivin. We also show that Survivin and the mitotic spindle are required to stabilize the position of the cleavage furrow in late anaphase and to complete furrow constriction. These results support the model that two spatially and temporally separate pathways control different key aspects during asymmetric cell division, ensuring correct cell fate determinant segregation and neuroblast self-renewal.


Subject(s)
Asymmetric Cell Division/physiology , Cytokinesis/physiology , Drosophila Proteins/physiology , Inhibitor of Apoptosis Proteins/physiology , Neural Stem Cells/physiology , Anaphase/physiology , Animals , Cell Polarity , Chromosome Segregation/physiology , Drosophila , Neural Stem Cells/cytology , Spindle Apparatus/physiology , Survivin
SELECTION OF CITATIONS
SEARCH DETAIL
...