Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Anim Physiol Anim Nutr (Berl) ; 108(4): 1096-1106, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38563274

ABSTRACT

This study investigated the effects of sumac and molasses on nutrient composition, in vitro degradability and fermentation quality of alfalfa silage. Alfalfa was ensiled in quadruplicate in vacuum jars untreated group (A) or after the following treatments: sumac group at 10% (AS), molasses group at 5% (AM), and sumac (10%) and molasses (5%) group (ASM). Silos (n = 64) were stored for 0, 21, 45 or 60 days. The results showed that dry matter (DM) contents of the AS, AM and ASM groups were statistically higher than the control group (p < 0.001). Only on the 21st day of fermentation the crude ash content of the AS group was found to be significantly higher than the other groups (p < 0.05). In vitro, DM and organic matter degradation values of the AMS group increased significantly (p < 0.001). A significant decrease in alfalfa silage's pH values was determined with sumac and molasses additives (p < 0.001). The ammonia nitrogen (NH3-N) values of the control, AS, AM and ASM groups at Day 60 were determined as 9.08%, 7.22%, 7.00% and 6.81% respectively (p < 0.05). The water-soluble carbohydrate (WSC) values of all groups on the 60th day were significantly decreased compared to the 0th day (p < 0.001). When the groups were evaluated within themselves, there was a statistically significant difference between the 0th and 60th day lactic acid values. The acetic acid content of the A group on the 60th day was found to be significantly higher than the other groups (p < 0.01). There was a significant decrease in propionic acid levels on Days 21, 45 and 60 compared to Day 0 of fermentation (p < 0.001). The highest butyric acid (BA) level was determined in the A group on the 21st, 45th and 60th days of fermentation (p < 0.05). In conclusion, sumac prevents proteolysis depending on its tannin content. It improves silage fermentation positively thanks to its organic acid content, while the molasses additive is effective in silage fermentation, mainly depending on the WSC level. However, it was determined that neither additive could reduce the silage pH to the appropriate value ranges due to the low doses, and they could not mainly prevent the formation of BA.


Subject(s)
Fermentation , Medicago sativa , Molasses , Silage , Medicago sativa/chemistry , Silage/analysis , Animals , Digestion/drug effects , Animal Nutritional Physiological Phenomena
2.
Ecotoxicol Environ Saf ; 270: 115883, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38157802

ABSTRACT

Cadmium (Cd) is a ubiquitous environmental pollutant, and Cd exposure harms human health, agriculture, and animal husbandry. The present study aimed to investigate the potential protective effect of dietary supplementation of calcium tetraborate (CTB) on productive performance, oxidative stress, cecal microflora, and histopathological changes in quail exposed to Cd. A total of one hundred twenty, 6-week-old Japanese quail (four females and two males/replicate) were divided into four groups (30 quails/group): the control group (feeding basic diet), CTB group (basic diet containing 300 mg/kg CaB4O7, 22.14% elemental B/kg diet), the Cd group (basic diet containing 100 mg/kg cadmium chloride (CdCl2) (total Cd content of 92.1 mg/kg)) and the CTB + Cd group (basic diet containing 300 mg/kg CTB and 100 mg/kg CdCl2). The results showed that Cd exposure caused decreased performance, increased the proportion of broken and soft-shelled eggs, induced oxidative stress, affected cecal microflora, epicardial hemorrhages in the heart, focal necrosis in the liver, degeneration in the kidneys, and degenerated and necrotic seminiferous tubules in the testicles. CTB prevented Cd-induced oxidative stress in liver tissue by increasing total antioxidant status and reducing total oxidant status. In addition, CTB improved egg production and feed conversion ratio (FCR). CTB protected the cecal microflora by inhibiting Enterobacteriaceae and promoting Lactobacillus. CTB also reduced Cd-induced histopathological damage in the heart, liver, kidneys, and testicles. In conclusion, these findings suggest that CTB could be used in Cd-challenged quail, and this compound provides new insights into the toxicity of environmental Cd.


Subject(s)
Borates , Cadmium , Gastrointestinal Microbiome , Animals , Female , Male , Humans , Cadmium/toxicity , Quail , Calcium/pharmacology , Coturnix , Diet , Oxidative Stress , Dietary Supplements/analysis , Animal Feed/analysis
3.
Toxicol Res ; 39(4): 749-759, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37779581

ABSTRACT

In this study, we investigated the effects of grape seed proanthocyanidin extract (GSPE) against the side effects of high-dose administration of methylprednisolone (MP) in male rats. A total of 32 adult Wistar male albino rats were divided into four groups: (1) control (CON), received standard food only; (2) MP, received standard food + intraperitoneal injection of 60 mg/kg MP on day 7; (3) GSPE, received standard food + 200 mg/kg/day GSPE; and (4) MP + GSPE, received standard food + 200 mg/kg/day of GSPE + intraperitoneal injection of 60 mg/kg MP on day 7. All animals in the GSPE and GSPE + MP groups were treated once a day by oral gavage for 14 consecutive days. The feed intake of rats in the MP and MP + GSPE groups decreased significantly by 24.14% and 13.52%, respectively (p < 0.05). Administration of MP resulted in significant increases in serum concentrations of blood urea nitrogen (p < 0.001), glucose (p < 0.01), alkaline phosphatase, and adrenocorticotropic hormone (p < 0.05). High-dose MP administration significantly reduced catalase (p < 0.001) and glutathione peroxidase (p < 0.05) concentrations in the liver and kidney tissues of rats, while glutathione concentrations were only reduced in liver tissue (p < 0.05). The expression levels of Bcl-2 and TNF-α in liver, kidney, and testicular tissue were significantly increased, while the expression levels of caspase-3 were reduced (p < 0.001). Furthermore, sperm concentration was significantly affected by GSPE in rats induced by high-dose MP, and sperm loss was significantly reduced in MP + GSPE (p < 0.05). These findings suggest that GSPE could be useful as a supplement to alleviate MP-induced toxicity in rats.

4.
J Integr Med ; 19(5): 451-459, 2021 09.
Article in English | MEDLINE | ID: mdl-34417154

ABSTRACT

OBJECTIVE: Chemotherapeutic drugs, such as cisplatin (CP), which are associated with oxidative stress and apoptosis, may adversely affect the reproductive system. This study tests whether administration of propolis and nano-propolis (NP) can alleviate oxidative stress and apoptosis in rats with testicular damage induced by CP. METHODS: In this study, polymeric nanoparticles including propolis were synthesized with a green sonication method and characterized using Fourier transform-infrared spectroscopy, Brunauer-Emmett-Teller, and wet scanning transmission electron microscopy techniques. In total, 56 rats were divided into the following seven groups: control, CP, propolis, NP-10, CP + propolis, CP + NP-10, and CP + NP-30. Propolis (100 mg/kg), NP-10 (10 mg/kg), and NP-30 (30 mg/kg) treatments were administered by gavage daily for 21 d, and CP (3 mg/kg) was administered intraperitoneally in a single dose. After the experiment, oxidative stress parameters, namely, malondialdehyde (MDA), glutathione (GSH), glutathione peroxidase (GPx), and catalase (CAT), and apoptotic pathways including B cell leukemia/lymphoma-2 protein (Bcl-2) and Bcl-2-associated X protein (Bax) were measured in testicular tissues. Furthermore, sperm quality and weights of the testis, epididymis, right cauda epididymis, seminal vesicles and prostate were evaluated. RESULTS: Propolis and NP (especially NP-30) were able to preserve oxidative balance (decreased MDA levels and increased GSH, CAT, and GPx activities) and activate apoptotic pathways (decreased Bax and increased Bcl-2) in the testes of CP-treated rats. Sperm motility in the control, CP, and CP + NP-30 groups were 60%, 48.75%, and 78%, respectively (P < 0.001). Especially, NP-30 application completely corrected the deterioration in sperm features induced by CP. CONCLUSION: The results show that propolis and NP treatments mitigated the side effects of CP on spermatogenic activity, antioxidant situation, and apoptosis in rats.


Subject(s)
Propolis , Testis , Animals , Antioxidants/metabolism , Cisplatin/toxicity , Male , Oxidative Stress , Rats , Rats, Sprague-Dawley , Sperm Motility
5.
Environ Sci Pollut Res Int ; 28(38): 53668-53678, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34036504

ABSTRACT

Lead (Pb) is one of the most common environmental pollutants and causes adverse effects on human and animal health. This study aimed to evaluate the protective role of beta-glucan against hepatic and reproductive toxicity induced by lead acetate. A total of 28 Sprague Dawley male rats were distributed into four groups (n = 7). The control group was intraperitoneally injected saline (1 ml/kg b.w.) daily for 21 days, the Pb group was intraperitoneally injected lead acetate (15 mg/kg b.w.) daily for 21 days, the beta-glucan group was orally administrated beta-glucan (50 mg/kg b.w.) daily for 21 days, and the Pb + beta-glucan group was intraperitoneally injected lead acetate (15 mg/kg b.w.) daily following the oral administration of beta-glucan (50 mg/kg b.w.) daily for 21 days. Results showed that feed intake in the Pb + beta-glucan group was significantly increased in comparison with that of the Pb group (p < 0.001). We also found that liver malondialdehyde (MDA) level was increased significantly in the Pb group (p < 0.01), while glutathione (GSH) level (p < 0.05), glutathione peroxidase (GSH-Px) (p < 0.05), and catalase (CAT) (p < 0.01) activities were reduced when they were compared with control. Moreover, Pb administration increased expression of pro-apoptotic protein Bax, the ratio of Bax/Bcl-2, and decreased the expression of the antiapoptotic protein Bcl-2 (p < 0.01). Also, Pb was found to cause a significant decrease in sperm motility (p < 0.01) and sperm concentration (p < 0.05) but increase in sperm tails and total sperm anomalies (p < 0.05). These findings were partially preserved by the administration of beta-glucan. Taken together, these results indicated that beta-glucan has the potential to alleviate the Pb-induced toxicity.


Subject(s)
Sperm Motility , beta-Glucans , Acetates/metabolism , Animals , Antioxidants/metabolism , Lead/metabolism , Lead/toxicity , Liver , Male , Malondialdehyde/metabolism , Oxidative Stress , Rats , Rats, Sprague-Dawley , Saccharomyces cerevisiae , Testis/metabolism , beta-Glucans/metabolism
6.
Ecotoxicol Environ Saf ; 208: 111608, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33396128

ABSTRACT

Lead (Pb) is one of the most toxic heavy metal environmental pollutants due to its widespread use of the industry and it is a harmful substance for human and animal health. This study was conducted to investigate the potential protective effects of ellagic acid (EA) on performance, egg quality, antioxidant parameters, and apoptotic pathway proteins in laying quails exposed to Pb toxicity. A total of 168 (15-week old) laying quails (Coturnix coturnix Japonica) were divided into 6 experimental groups (with similar initial average body weight). Birds were fed 1 of 6 diets for 8 weeks: 1 - Control (basal diet), 2 - Pb (basal diet + 100 mg/kg Pb), 3 - EA-300 (basal diet + 300 mg/kg EA), 4 - EA-500 (basal diet + 500 mg/kg EA), 5 - Pb + EA-300 (basal diet + 100 mg/kg Pb + 300 mg/kg EA), 6 - Pb + EA-500 (basal diet + 100 mg/kg Pb + 500 mg/kg EA). The results showed that adding 100 mg/kg of Pb to basal diet was adversely affected the performance parameters and, feed intake and egg production were significantly decreased by Pb supplementation (P < 0.01). However, the EA supplementation to Pb groups improved the performance parameters. Compared with the Pb alone group, in Pb + EA-500 group increased egg production by 8.4%. There were no significant differences in the Haugh unit, albumen index, and yolk index among groups (P > 0.05). Liver and kidney tissues of Pb group malondialdehyde (MDA) level increased (P < 0.001) and, GSH, GSH-Px, and CAT values decreased (P < 0.001) but, EA supplementation alleviated this condition (P < 0.001). The protein levels of caspase-3 and -9 were significantly increased in the Pb group compared to the control group, whereas EA supplementation alleviated the Pb-induced apoptosis by decreasing caspase-3 and -9 levels in the liver tissue (p < 0.001). In laying quails exposed to Pb toxicity, EA supplementation improves the performance parameters, enhances the antioxidant defense system, and suppresses apoptosis via regulates the expression of caspase-3 and -9. Thus, it was concluded that EA (especially 500 mg/kg) can ameliorate the toxic effects of Pb exposure in quails.


Subject(s)
Apoptosis/drug effects , Coturnix/metabolism , Ellagic Acid/pharmacology , Lead/toxicity , Ovum/drug effects , Oxidative Stress/drug effects , Animal Feed , Animals , Antioxidants/metabolism , Body Weight/drug effects , Coturnix/growth & development , Dietary Supplements , Ellagic Acid/metabolism , Female , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Liver/drug effects , Liver/metabolism , Liver/pathology , Malondialdehyde/metabolism , Ovum/metabolism
7.
Plants (Basel) ; 9(9)2020 Aug 21.
Article in English | MEDLINE | ID: mdl-32825574

ABSTRACT

This study was performed to determine the effects of chitosan-coated nano-propolis (NP), which is synthesized via a green sonochemical method, and propolis on the side effects of cisplatin (CP), which is a widely used drug in the treatment of cancer. For this aim, 56 rats were divided into seven groups, balancing their body weights (BW). The study was designed as Control, CP (3 mg/kg BW at single dose of CP as intraperitoneal, ip), Propolis (100 mg/kg BW per day of propolis by gavage), NP-10 (10 mg/kg BW of NP per day by gavage), CP + Propolis (3 mg/kg BW of CP and 100 mg/kg BW of propolis), CP + NP-10 (3 mg/kg CP and 10 mg/kg BW of NP), and CP + NP-30 (3 mg/kg BW of CP and 30 mg/kg BW of NP). Propolis and NP (especially NP-30) were preserved via biochemical parameters, oxidative stress, and activation of apoptotic pathways (anti-apoptotic protein: Bcl-2 and pro-apoptotic protein: Bax) in liver and kidney tissues in the toxicity induced by CP. The NP were more effective than propolis at a dose of 30 mg/kg BW and had the potential to ameliorate CP's negative effects while overcoming serious side effects such as liver and kidney damage.

SELECTION OF CITATIONS
SEARCH DETAIL
...