Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Theor Appl Genet ; 136(1): 18, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36680594

ABSTRACT

To assess the efficiency of genetic improvement programs, it is essential to assess the genetic trend in long-term data. The present study estimates the genetic trends for grain yield of rice varieties released between 1970 and 2020 by the Bangladesh Rice Research Institute. The yield of the varieties was assessed from 2001-2002 to 2020-2021 in multi-locations trials. In such a series of trials, yield may increase over time due to (i) genetic improvement (genetic trend) and (ii) improved management or favorable climate change (agronomic/non-genetic trend). In both the winter and monsoon seasons, we observed positive genetic and non-genetic trends. The annual genetic trend for grain yield in both winter and monsoon rice varieties was 0.01 t ha-1, while the non-genetic trend for both seasons was 0.02 t ha-1, corresponding to yearly genetic gains of 0.28% and 0.18% in winter and monsoon seasons, respectively. The overall percentage yield change from 1970 until 2020 for winter rice was 40.96%, of which 13.91% was genetic trend and 27.05% was non-genetic. For the monsoon season, the overall percentage change from 1973 until 2020 was 38.39%, of which genetic and non-genetic increases were 8.36% and 30.03%, respectively. Overall, the contribution of non-genetic trend is larger than genetic trend both for winter and monsoon seasons. These results suggest that limited progress has been made in improving yield in Bangladeshi rice breeding programs over the last 50 years. Breeding programs need to be modernized to deliver sufficient genetic gains in the future to sustain Bangladeshi food security.


Subject(s)
Oryza , Oryza/genetics , Bangladesh , Plant Breeding , Edible Grain/genetics , Agriculture , Seasons
2.
Plants (Basel) ; 11(9)2022 Apr 24.
Article in English | MEDLINE | ID: mdl-35567151

ABSTRACT

Soil salinity is a major constraint to rice production in coastal areas around the globe, and modern high-yielding rice cultivars are more sensitive to high salt stress, which limits rice productivity. Traditional breeding programs find it challenging to develop stable salt-tolerant rice cultivars with other stress-tolerant for the saline environment in Bangladesh due to large yield variations caused by excessive salinity fluctuations during the dry (boro) season. We examined trait characterization of 18 advanced breeding lines using SNP genotyping and among them, we found line G6 (BR9621-B-1-2-11) (single breeding line with multiple-stress-tolerant QTL/genes) possessed 9 useful QTLs/genes, and two lines (G4:BR9620-2-7-1-1 and G14: IR 103854-8-3-AJY1) carried 7 QTLs/genes that control the desirable traits. To evaluate yield efficiency and stability of 18 rice breeding lines, two years of field experiment data were analyzed using AMMI (additive main effect and multiplicative interaction) and GGE (Genotype, Genotype Environment) biplot analysis. The AMMI analysis of variance demonstrated significant genotype, environment, and their interaction, accounting for 14.48%, 62.38%, and 19.70% of the total variation, respectively, and revealed that among the genotypes G1, G13, G14, G17, and G18 were shown to some extent promising. Genotype G13 (IR 104002-CMU 28-CMU 1-CMU 3) was the most stable yield based on the AMMI stability value. The GGE biplot analysis indicates 76% of the total variation (PC1 48.5% and PC2 27.5%) which is performed for revealing genotype × environment interactions. In the GGE biplot analysis, genotypes were checked thoroughly in two mega-environments (ME). Genotype G14 (IR103854-8-3-AJY1) was the winning genotype in ME I, whereas G1 (BR9627-1-3-1-10) in ME II. Because of the salinity and stability factors, as well as the highest averages of grain yield, the GGE and AMMI biplot model can explain that G1 and G13 are the best genotypes. These (G1, G6, G13, G14, G17, and G18) improved multiple-stress-tolerant breeding lines with stable grain yield could be included in the variety release system in Bangladesh and be used as elite donor parents for the future breeding program as well as for commercial purposes with sustainable production.

SELECTION OF CITATIONS
SEARCH DETAIL
...