Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 13006, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844607

ABSTRACT

The experimental findings from the Large Helical Device have demonstrated a fast, nondiffusive behavior during the propagation of heat pulses, with an observed increase in speed with reduction in their temporal width. Concurrent propagation of the temperature gradient and turbulence, in a timeframe spanning from a few milliseconds to tens of milliseconds, aligned with the avalanche model. These results indicate that the more spatiotemporally localized the heat and turbulence pulses are, the greater the deviation of the plasma from its equilibrium state, coupled with faster propagation velocity. This insight is pivotal for future fusion reactors, which necessitate the maintenance of a steady-state, non-equilibrium condition.

2.
Article in English | MEDLINE | ID: mdl-21384725

ABSTRACT

Millimeter-wave components were re-examined for high power (Mega-Watt) and steady-state (greater than one hour) operation. Some millimeter-wave components, including waveguide joints, vacuum pumping sections, power monitors, sliding waveguides, and injection windows, have been improved for high power CW (Continuous Waves) transmission. To improve transmission efficiency, information about the wave phase and mode content of high power millimeter-waves propagating in corrugated waveguides, which are difficult to measure directly, were obtained by a newly developed method based on retrieved phase information. To optimize the plasma heating efficiency, a proof-of-principle study of the injection polarization feedback control was performed in the low power test stand.

3.
Rev Sci Instrum ; 79(10): 10E721, 2008 Oct.
Article in English | MEDLINE | ID: mdl-19044538

ABSTRACT

A version of the collective backscattering diagnostic using gyrotron radiation for small-scale turbulence is described. The diagnostic is used to measure small-scale (k(s) approximately 34 cm(-1)) plasma density fluctuations in large helical device experiments on the electron cyclotron heating of plasma with the use of 200 kW 82.7 GHz heating gyrotron. A good signal to noise ratio during plasma production phase was obtained, while contamination of stray light increased during plasma build-up phase. The effect of the stray radiation was investigated. The available quasioptical system of the heating system was utilized for this purpose.

4.
Rev Sci Instrum ; 79(10): 10F318, 2008 Oct.
Article in English | MEDLINE | ID: mdl-19044631

ABSTRACT

Heavy ion beam probe (HIBP) for large helical device (LHD) has been improved to measure the potential fluctuation in high-temperature plasmas. The spatial resolution is improved to about 10 mm by controlling the focus of a probe beam. The HIBP is applied to measure the potential fluctuation in plasmas where the rotational transform is controlled by electron cyclotron current drive. The fluctuations whose frequencies change with the time constant of a few hundreds of milliseconds and that with a constant frequency are observed. The characteristics of the latter fluctuation are similar to those of the geodesic acoustic mode oscillation. The spatial profiles of the fluctuations are also obtained.

SELECTION OF CITATIONS
SEARCH DETAIL
...