Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 12(35): 39236-39244, 2020 Sep 02.
Article in English | MEDLINE | ID: mdl-32822164

ABSTRACT

Phase-separated structures in photoactive layers composed of electron donors and acceptors in organic photovoltaics (OPVs) generally exert a profound impact on the device performance. In this study, nonfullerene acceptors (NFAs) where a heteronanographene central core was furnished with branched alkoxy chains of different lengths, TACIC-EH, TACIC-BO, and TACIC-HD, were prepared to adjust the aggregation tendency and systematically probe the relationships of film structures with photophysical and photovoltaic properties. The side-chain length showed negligible effects on the absorption properties and energy levels of TACICs. In addition, regardless of the chain length, all TACIC films exhibited characteristically long singlet exciton lifetimes (1330-2330 ps) compared to those in solution (≤220 ps). Using a conjugated polymer donor, PBDB-T, the best OPV performance was achieved with TACIC-BO that contained medium-length chains, exhibiting a power conversion efficiency (PCE) of 9.92%. TACIC-HD with the longest chains showed deteriorated electron mobility due to the long insulating alkoxy groups. Therefore, the PBDB-T:TACIC-HD-based device revealed a low charge collection efficiency and PCE (8.21%) relative to the PBDB-T:TACIC-BO-based device, but their film morphologies were analogous. Meanwhile, TACIC-EH with the shortest chains showed low solubility and formed micrometer-sized large aggregates in the blend film with PBDB-T. Although the charge collection efficiency of PBDB-T:TACIC-EH was lower than that of PBDB-T:TACIC-BO, the efficiencies of exciton diffusion to the donor-acceptor interface were sufficiently high (>98%) owing to the elongated singlet exciton lifetime of TACIC-EH. The PCE of the PBDB-T:TACIC-EH-based device remained moderate (7.10%). Therefore, TACICs with the long singlet exciton lifetimes in the films provide a clear guideline for NFAs with low sensitivity of OPV device performance to the blend film structures, which is advantageous for large-scale OPV production with high reproducibility.

2.
Chem Sci ; 11(12): 3250-3257, 2020 Mar 05.
Article in English | MEDLINE | ID: mdl-34122832

ABSTRACT

Electron-acceptor small-molecules possessing a long exciton lifetime and a narrow energy band gap, opposing the energy gap law, are highly desirable for high-performance organic photovoltaics (OPVs) by realizing their efficient light-harvesting ability (LH), exciton diffusion (ED), and charge transfer (CT). Toward this goal, we designed an acceptor-donor-acceptor (A-D-A) type nonfullerene acceptor (NFA), TACIC, having an electron-donating, self-assembling two-dimensional (2D) nanographene unit, thienoazacoronene, at the center with electron-withdrawing groups at both ends. The TACIC film exhibited a narrow band gap (1.59 eV) with excellent LH. Surprisingly, the TACIC film showed an extremely long exciton lifetime (1.59 ns), suppressing undesirable nonradiative decay by its unique self-assembling behavior. When combined with a conjugated polymer donor, PBDB-T, slow ED and CT were observed (60 ps) with the excitation of TACIC owing to the large TACIC domain sizes. Nevertheless, the unusually high efficiencies of ED and CT (96% in total) were achieved by the long TACIC exciton lifetime. Additionally, unusual energy transfer (EnT) from the excited PBDB-T to TACIC was seen, demonstrating its dual LH role. The OPV device with PBDB-T and TACIC showed a high incident photon-to-current efficiency (IPCE) exceeding 70% at up to 710 nm and a power conversion efficiency of ∼10%. This result will open up avenues for a rational strategy of OPVs where LH, ED, and CT from the acceptor side as well as LH, EnT, ED, and CT from the donor side can be better designed by using 2D nanographene as a promising building block for high-performance A-D-A type NFAs.

3.
Chem Commun (Camb) ; 54(4): 405-408, 2018 Jan 04.
Article in English | MEDLINE | ID: mdl-29250631

ABSTRACT

The effects of regioisomer and diastereomer separations of [70]PCBM on structures and photovoltaic properties of PffBT4T-2OD:[70]PCBM blend films have systematically been investigated for the first time. Decreasing the amount of a diastereomer of ß-[70]PCBM with high aggregation tendency (ß1-[70]PCBM) improved the photovoltaic performances.

4.
RSC Adv ; 8(33): 18316-18326, 2018 May 17.
Article in English | MEDLINE | ID: mdl-35541128

ABSTRACT

Isomer-controlled [70]fullerene bis-adducts can achieve high performance as electron-acceptors in organic photovoltaics (OPVs) because of their stronger absorption intensities than [60]fullerene derivatives, higher LUMO energy levels than mono-adducts, and less structural and energetic disorder than random isomer mixtures. Especially, attractive are cis-1 isomers that have the closest proximity of addends owing to their plausible more regular close packed structure. In this study, propylene-tethered cis-1 bismethano[70]fullerene with two methyl, ethyl, phenyl, or thienyl groups were rationally designed and prepared for the first time to investigate the OPV performances with an amorphous conjugated polymer donor (PCDTBT). The cis-1 products were found to be a mixture of two regioisomers, α-1-α and α-1-ß as major and minor components, respectively. Among them, the cis-1 product with two ethyl groups (Et2-cis-1-[70]PBC) showed the highest OPV performance, encouraging us to isolate its α-1-α isomer (Et2-α-1-α-[70]PBC) by high-performance liquid chromatography. OPV devices based on Et2-cis-1-[70]PBC and Et2-α-1-α-[70]PBC with PCDTBT showed open-circuit voltages of 0.844 V and 0.864 V, respectively, which were higher than that of a device with typical [70]fullerene mono-adduct, [70]PCBM (0.831 V) with a lower LUMO level. However, the short-circuit current densities and resultant power conversion efficiencies of the devices with Et2-cis-1-[70]PBC (9.24 mA cm-2, 4.60%) and Et2-α-1-α-[70]PBC (6.35 mA cm-2, 3.25%) were lower than those of the device with [70]PCBM (10.8 mA cm-2, 5.8%) due to their inferior charge collection efficiencies. The results obtained here reveal that cis-1 [70]fullerene bis-adducts do not guarantee better OPV performance and that further optimization of the substituent structures is necessary.

SELECTION OF CITATIONS
SEARCH DETAIL
...