Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Eur J Appl Physiol ; 124(6): 1703-1717, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38193907

ABSTRACT

PURPOSE: While various fitness tests have been developed to assess physical performances, it is unclear how these tests are affected by differences, such as, in morphological and neural factors. This study was aimed to investigate associations between individual differences in physical fitness tests and neuromuscular properties. METHODS: One hundred and thirty-three young adults participated in various general physical fitness tests and neuromuscular measurements. The appendicular skeletal muscle mass (ASM) was estimated by bioelectrical impedance analysis. Echo intensity (EI) was evaluated from the vastus lateralis. During submaximal knee extension force, high-density surface electromyography of the vastus lateralis was recorded and individual motor unit firings were detected. Y-intercept (i-MU) and slope (s-MU) from the regression line between the recruitment threshold and motor unit firing rate were calculated. RESULTS: Stepwise multiple regression analyses revealed that knee extension strength could be explained (adjusted R2 = 0.712) by ASM (ß = 0.723), i-MU (0.317), EI (- 0.177), and s-MU (0.210). Five-sec stepping could be explained by ASM (adjusted R2 = 0.212). Grip strength, side-stepping, and standing broad jump could be explained by ASM and echo intensity (adjusted R2 = 0.686, 0.354, and 0.627, respectively). Squat jump could be explained by EI (adjusted R2 = 0.640). Counter-movement jump could be explained by EI and s-MU (adjusted R2 = 0.631). On the other hand, i-MU and s-MU could be explained by five-sec stepping and counter-movement jump, respectively, but the coefficients of determination were low (adjusted R2 = 0.100 and 0.045). CONCLUSION: Generally developed physical fitness tests were mainly explained by morphological factors, but were weakly affected by neural factors involved in performance.


Subject(s)
Muscle Strength , Muscle, Skeletal , Physical Fitness , Humans , Male , Female , Physical Fitness/physiology , Adult , Muscle Strength/physiology , Muscle, Skeletal/physiology , Young Adult , Electromyography/methods , Exercise Test/methods
2.
J Neurophysiol ; 131(3): 472-479, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38264791

ABSTRACT

Intrinsic factors related to neuromuscular function are time-of-day dependent, but diurnal rhythms in neural and muscular components of the human neuromuscular system remain unclear. The present study aimed to investigate the time-of-day effects on neural excitability and muscle contractile properties by assessing the firing properties of tracked motor units and electrically evoked twitch muscle contraction. In 15 young adults (22.9 ± 4.7 yr), neuromuscular function was measured in the morning (10:00), at noon (13:30), in the evening (17:00), and at night (20:30). Four measurements were completed within 24 h. The measurements consisted of maximal voluntary contraction (MVC) strength of knee extension, recording of high-density surface electromyography (HDsEMG) from the vastus lateralis during ramp-up contraction to 50% of MVC, and evoked twitch torque of knee extensors by electrical stimulation. Recorded HDsEMG signals were decomposed to individual motor unit firing behaviors and the same motor units were tracked among the times of day, and recruitment thresholds and firing rates were calculated. The number of detected and tracked motor units was 127. Motor unit firing rates significantly increased from morning to noon, evening, and night (P < 0.01), but there were no significant differences in recruitment thresholds among the times of day (P > 0.05). Also, there were no significant effects of time of day on evoked twitch torque (P > 0.05). Changes in the motor unit firing rate and evoked twitch torque were not significantly correlated (P > 0.05). These findings suggest that neural excitability may be affected by the time of day, but it did not accompany changes in peripheral contractile properties in a diurnal manner.NEW & NOTEWORTHY We investigated the variations of tracked motor unit firing properties and electrically evoked twitch contraction during the day within 24 h. The variation of motor unit firing rate was observed, and tracked motor unit firing rate increased at noon, in the evening, and at night compared with that in the morning. The variation in motor unit firing rate was independent of changes in twitch contraction. Motor unit firing rate may be affected by diurnal rhythms.


Subject(s)
Muscle Contraction , Muscle, Skeletal , Young Adult , Humans , Muscle, Skeletal/physiology , Muscle Contraction/physiology , Electromyography , Quadriceps Muscle , Knee , Isometric Contraction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...