Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-22368770

ABSTRACT

The deleterious and sometimes fatal outcomes of bacterial infectious diseases are the net result of the interactions between the pathogen and the host, and the genetically tractable fruit fly, Drosophila melanogaster, has emerged as a valuable tool for modeling the pathogen-host interactions of a wide variety of bacteria. These studies have revealed that there is a remarkable conservation of bacterial pathogenesis and host defence mechanisms between higher host organisms and Drosophila. This review presents an in-depth discussion of the Drosophila immune response, the Drosophila killing model, and the use of the model to examine bacterial-host interactions. The recent introduction of the Drosophila model into the oral microbiology field is discussed, specifically the use of the model to examine Porphyromonas gingivalis-host interactions, and finally the potential uses of this powerful model system to further elucidate oral bacterial-host interactions are addressed.

2.
Infect Immun ; 79(1): 449-58, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21041486

ABSTRACT

Porphyromonas gingivalis is a Gram-negative obligate anaerobe that has been implicated in the etiology of adult periodontitis. We recently introduced a Drosophila melanogaster killing model for examination of P. gingivalis-host interactions. In the current study, the Drosophila killing model was used to characterize the host response to P. gingivalis infection by identifying host components that play a role during infection. Drosophila immune response gene mutants were screened for altered susceptibility to killing by P. gingivalis. The Imd signaling pathway was shown to be important for the survival of Drosophila infected by nonencapsulated P. gingivalis strains but was dispensable for the survival of Drosophila infected by encapsulated P. gingivalis strains. The P. gingivalis capsule was shown to mediate resistance to killing by Drosophila antimicrobial peptides (Imd pathway-regulated cecropinA and drosocin) and human beta-defensin 3. Drosophila thiol-ester protein II (Tep II) and Tep IV and the tumor necrosis factor (TNF) homolog Eiger were also involved in the immune response against P. gingivalis infection, while the scavenger receptors Eater and Croquemort played no roles in the response to P. gingivalis infection. This study demonstrates that the Drosophila killing model is a useful high-throughput model for characterizing the host response to P. gingivalis infection and uncovering novel interactions between the bacterium and the host.


Subject(s)
Drosophila melanogaster/microbiology , Porphyromonas gingivalis/physiology , Animals , Bacterial Capsules , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Gene Deletion , Gene Expression Regulation/physiology , Host-Pathogen Interactions , Membrane Proteins/genetics , Membrane Proteins/metabolism , Signal Transduction
3.
Infect Immun ; 79(1): 439-48, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21041487

ABSTRACT

Porphyromonas gingivalis has been implicated in the etiology of adult periodontitis. In this study, we examined the viability of Drosophila melanogaster as a new model for examining P. gingivalis-host interactions. P. gingivalis (W83) infection of Drosophila resulted in a systemic infection that killed in a dose-dependent manner. Differences in the virulence of several clinically prevalent P. gingivalis strains were observed in the Drosophila killing model, and the results correlated well with studies in mammalian infection models and human epidemiologic studies. P. gingivalis pathobiology in Drosophila did not result from uncontrolled growth of the bacterium in the Drosophila hemolymph (blood) or overt damage to Drosophila tissues. P. gingivalis killing of Drosophila was multifactorial, involving several bacterial factors that are also involved in virulence in mammals. The results from this study suggest that many aspects of P. gingivalis pathogenesis in mammals are conserved in Drosophila, and thus the Drosophila killing model should be useful for characterizing P. gingivalis-host interactions and, potentially, polymicrobe-host interactions.


Subject(s)
Drosophila melanogaster/microbiology , Porphyromonas gingivalis/physiology , Porphyromonas gingivalis/pathogenicity , Animals , Disease Models, Animal , Female , Time Factors , Virulence
4.
J Clin Microbiol ; 47(10): 3073-81, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19675220

ABSTRACT

Porphyromonas gingivalis is implicated in the etiology of chronic periodontitis. Genotyping studies suggest that genetic variability exists among P. gingivalis strains; however, the extent of variability remains unclear and regions of variability remain largely unidentified. To assess P. gingivalis strain diversity, we previously used heteroduplex analysis of the ribosomal operon intergenic spacer region (ISR) to type strains in clinical samples and identified 22 heteroduplex types. Additionally, we used ISR sequence analysis to determine the relatedness of P. gingivalis strains to one another and demonstrated a link between ISR sequence phylogeny and the disease-associated phenotype of the strains. In the current study, heteroduplex analysis of the ISR was used to determine the worldwide genetic variability and distribution of P. gingivalis, and microarray-based comparative genomic hybridization (CGH) analysis was used to more comprehensively examine the variability of major heteroduplex type strains by using the entire genome. Heteroduplex analysis of clinical samples from geographically diverse populations identified 6 predominant geographically widespread heteroduplex types (prevalence, > or = 5%) and 14 rare heteroduplex types (prevalence, <2%) which are found in one or a few locations. CGH analysis of the genomes of seven clinically prevalent heteroduplex type strains identified 133 genes from strain W83 that were divergent in at least one of the other strains. The relatedness of the strains to one another determined on the basis of genome content (microarray) analysis was highly similar to their relatedness determined on the basis of ISR sequence analysis, and a striking correlation between the genome contents and disease-associated phenotypes of the strains was observed.


Subject(s)
Genetic Variation , Periodontitis/microbiology , Porphyromonas gingivalis/classification , Porphyromonas gingivalis/genetics , Cluster Analysis , Comparative Genomic Hybridization , DNA, Bacterial/genetics , DNA, Ribosomal Spacer/genetics , Genotype , Geography , Heteroduplex Analysis , Humans , Phylogeny , Porphyromonas gingivalis/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...