Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Qual ; 35(1): 390-3, 2006.
Article in English | MEDLINE | ID: mdl-16397114

ABSTRACT

Different livestock feeds manipulations have been reported to reduce the total P concentration in manure. Information on the influence of these dietary manipulation strategies on the forms of P in manure is, however, limited. This study was, therefore, conducted to investigate the effect of diet manipulation through feed micronization and enzyme supplementation on the forms of P in swine manure. Eight growing pigs were fed four diets: barley-raw pea (BRP), barley-micronized pea (BMP), barley-raw pea with enzyme (BRPE), and barley-micronized pea with enzyme (BMPE) in a 4 x 4 Latin square design. Because we are interested in the effect of enzyme cocktail and pea micronization on manure P, we did not reduce the non-phytate P with enzyme addition in this study. The fecal material and urine were collected and analyzed for total P. Fecal material was fractionated to determine the total P in H2O-, NaHCO3-, NaOH-, and HCl-extractable fractions. The total P in the residual fractions was also determined. About 98% of the total P excreted by the pigs was found in the fecal material. Inclusion of micronized pea in pig diet did not have any significant effect (p > 0.1) on either the total P or the different P fractions in the manure. The labile P (the sum of H2O-P and NaHCO3-P) was significantly reduced (p < 0.05) by the addition of enzyme to swine diets. Pigs fed the BRPE and BMPE had 14 and 18% lower labile P, respectively, compared with pigs fed the BRP. Enzyme addition to pig diets reduced not only the total P in manure, but also the labile P fraction, which is of great environmental concern. Thus, the potential of P loss to runoff and the subsequent eutrophication can be reduced by enzyme addition to pig diets.


Subject(s)
Animal Feed , Enzymes/administration & dosage , Feces/chemistry , Phosphorus/analysis , Pisum sativum , Animals , Swine
2.
J Environ Qual ; 34(6): 1944-51, 2005.
Article in English | MEDLINE | ID: mdl-16221812

ABSTRACT

The degree of phosphorus saturation (DPS) has been used in evaluating the risk of P loss from soil to runoff. While techniques are available for calculating DPS for acid soils, no widely used technique exists for neutral to calcareous soils that are typical of the Northern Great Plains, including Manitoba (Canada) soils. This study aimed to develop techniques of calculating the DPS of neutral to alkaline soils. Four measures of soil labile P and ten indices of P sorption capacity were used to calculate the DPS of 115 Manitoba soils. The various DPS calculated were evaluated using water-extractable ((H2O)) P as an index of P susceptibility to runoff loss. The DPS obtained using Olsen-extractable ((Ols)) P and the Langmuir adsorption maximum (ES(max)) ranged from 0.5 to 31.9% while those obtained from P(Ols) and the single-point adsorption index (P(150)) ranged from 0.9 to 73.9%. Of all the DPS evaluated, those that included P(Ols) and Mehlich 3-extractable ((M3)) P as the numerator with either P(150) or ES(max) as the denominator were fairly well correlated with P(H2O) (r values ranged between 0.45 and 0.63). Along with ES(max) and P(150), a new method of calculating DPS was formulated as the ratio of P(Ols) or P(M3) to Ca(M3) or (Ca + Mg)(M3). We found that the ratio of ammonium oxalate-extractable ((ox)) P to (Al + Fe)(ox), which has been widely used to calculate DPS in acid soils, was not suitable for neutral to alkaline soils of Manitoba. In these neutral to alkaline soils, Ca(M3) or (Ca + Mg)(M3) were better indices of P sorption capacity while P(Ols) and P(M3) provided better estimates of labile soil P. The DPS calculated using Ca(M3) or (Ca + Mg)(M3) were well correlated with P(H2O); however, they were numerically smaller than those obtained from the Langmuir adsorption maximum. As such, a saturation coefficient (alpha) with a value of 0.2 was generated to improve the numerical values of the newly estimated DPS. This new approach can be used to estimate the DPS in neutral and calcareous soils without the need to generate a P adsorption maximum.


Subject(s)
Environmental Monitoring/methods , Models, Theoretical , Phosphorus/metabolism , Soil , Adsorption , Calcium/metabolism , Magnesium/metabolism , Manitoba , Phosphorus/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...