Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Fish Biol ; 103(3): 516-528, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37246738

ABSTRACT

Morphological similarities between skates of the genus Dipturus in the north-eastern Atlantic and Mediterranean have resulted in longstanding confusion, misidentification and misreporting. Current evidence indicates that the common skate is best explained as two species, the flapper skate (Dipturus intermedius) and the common blue skate (D. batis). However, some management and conservation initiatives developed prior to the separation continue to refer to common skate (as 'D. batis'). This taxonomic uncertainty can lead to errors in estimating population viability, distribution range, and impact on fisheries management and conservation status. Here, we demonstrate how a concerted taxonomic approach, using molecular data and a combination of survey, angler and fisheries data, in addition to expert witness statements, can be used to build a higher resolution picture of the current distribution of D. intermedius. Collated data indicate that flapper skate has a more constrained distribution compared to the perceived distribution of the 'common skate', with most observations recorded from Norway and the western and northern seaboards of Ireland and Scotland, with occasional specimens from Portugal and the Azores. Overall, the revised spatial distribution of D. intermedius has significantly reduced the extant range of the species, indicating a possibly fragmented distribution range.


Subject(s)
Skates, Fish , Animals , Skates, Fish/anatomy & histology , Ireland , Portugal , Scotland , Fisheries
2.
J Fish Biol ; 103(1): 73-90, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37088957

ABSTRACT

Apristurus ovicorrugatus, a new species of deepwater catshark, is described from northwestern Australia. Unique egg cases belonging to an unknown species of Apristurus prompted a more detailed investigation of Apristurus specimens off northwestern Australia. One specimen previously identified as A. sinensis collected off Dampier Archipelago was found gravid with a single egg case. Removal of this egg case confirmed that this species was responsible for producing the unique egg cases previously recorded. The egg cases of this species have strong T-shaped longitudinal ridges on the dorsal and ventral surfaces which are unique in the genus Apristurus. The ridges most closely resemble those present in Bythaelurus canescens from South America, but are larger and always T-shaped. The holotype is closest morphologically to A. sinensis but differs in having a medium brown buccal cavity (vs. jet black), ridged egg cases (vs. smooth egg cases), fewer intestinal spiral valve turns and larger pectoral fins. The holotype is also similar, and closest on a molecular level, to A. nakayai with which it shares a unique synapomorphic character, the white shiny iris (apomorphic within the genus). A late-term embryo removed from an egg case superficially resembled the holotype except in having two parallel rows of enlarged dermal denticles on the dorsolateral predorsal surface. Recent nomenclatural changes to the genera Apristurus and Pentanchus are discussed and challenged. This study highlights the important contribution that egg case morphology has on oviparous elasmobranch taxonomy.


Subject(s)
Sharks , Animals , Sharks/anatomy & histology , South America , Australia
3.
Zootaxa ; 4998(1): 1-115, 2021 Jul 07.
Article in English | MEDLINE | ID: mdl-34810507

ABSTRACT

An updated and evidence-based checklist of Mediterranean Sea fishes is provided. Each of the fish species in the Mediterranean Sea listed here was either listed in the last published checklist of the Mediterranean fishes or in other articles, reports or new records, and the checklist is critically assessed. Out of the assessed 791 species previously reported from the Mediterranean, the presence of 759 species is confirmed while 32 species are excluded from the new checklist, by lacking evidence of presence or representing obvious taxonomic confusions. The net increase in known Mediterranean fish species richness since the last checklist is 11%. The non-native Mediterranean species now represent 22.1% (168 species) of the known Mediterranean fish diversity. The evidence-based protocol applied here provides a reliable checklist of marine fishes, for which each of the included species has indeed been recorded at least once within the discussed geographic area in the Mediterranean Sea.


Subject(s)
Fishes , Animals , Mediterranean Sea
4.
J Fish Biol ; 97(2): 515-526, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32447756

ABSTRACT

Knowledge of skate ecology must be improved to ensure their effective protection. This study represents the first description of diet composition for one of the largest European rajid, the blue skate Dipturus cf. flossada. A total of 346 specimens collected in the Celtic Sea from 2012 to 2015 were analysed for their gut content, with respect to individual total length, maturity stage and sex. Overall, the blue skate diet mainly consisted of shrimps and prawns, crabs and teleost fishes. Nonmetric multidimensional scaling and ANOSIM analyses revealed major ontogenetic shifts in the feeding strategy that were related to size and maturity, but not to sex. Shrimps and prawns, mostly composed of Crangon allmanni, dominated the diet of small and immature individuals, while mod-size skate primarily preyed on crabs. The prevalence of crustaceans decreased with size and maturity, and was gradually replaced by teleost fishes in large mature individuals. A concomitant increase of the trophic level with size revealed that large blue skate become a top predator within the ecosystem. These results highlight the need to include ontogenetic changes in the diet description. As individuals grow and mature, blue skates can play a fundamental role in the structure of the Celtic Sea food web.


Subject(s)
Feeding Behavior/physiology , Skates, Fish/physiology , Animals , Body Size , Crustacea , Diet , Ecology , Female , Food Chain , Male , Nutritional Status , Skates, Fish/anatomy & histology
5.
Mol Phylogenet Evol ; 139: 106525, 2019 10.
Article in English | MEDLINE | ID: mdl-31158485

ABSTRACT

We report a hitherto unknown radiation within the clingfishes (Gobiesocidae), discovered in one of the best-studied marine biomes, the Mediterranean Sea. The monotypic genus Gouania is a Mediterranean endemic inhabiting the interstices of gravel beaches. Using geometric morphometric analyses, we identified two distinct morphotypes (characterized by a slender and a stout body shape, respectively) among Gouania willdenowi sampled from the three major Mediterranean basins (Eastern, Western and Adriatic). Slender and stout G. willdenowi occurred sympatrically in the Adriatic and the Eastern Mediterranean basins. Only the stout morphotype was found in the Western Mediterranean. Morphotypes were further distinguished by relative eye size and number of vertebrae. Based on mitochondrial and nuclear gene sequences, five highly divergent clades (COI-based K2P distances of 8 to 15%) were identified. The clades represented, respectively, stout Adriatic, slender Adriatic, stout Eastern, slender Eastern and stout Western Mediterranean Gouania. This suggests that the genus Gouania comprises at least five different species. Phylogenetic relationships among clades furthermore imply repeated evolution of convergent morphotypes. The onset of the Gouania radiation was dated to 3.23 (95% HPD 2.08-5.90) mya, and may therefore have overlapped with or followed the Messinian salinity crisis.


Subject(s)
Fishes/classification , Fishes/genetics , Genetic Speciation , Phylogeny , Animals , DNA, Mitochondrial/genetics , Ecosystem , Fishes/anatomy & histology , Mediterranean Sea , Salinity , Species Specificity
6.
Mol Phylogenet Evol ; 124: 151-161, 2018 07.
Article in English | MEDLINE | ID: mdl-29551522

ABSTRACT

Biotic and abiotic forces govern the evolution of trophic niches, which profoundly impact ecological and evolutionary processes and aspects of species biology. Herbivory is a particularly interesting trophic niche because there are theorized trade-offs associated with diets comprised of low quality food that might prevent the evolution of herbivory in certain environments. Herbivory has also been identified as a potential evolutionary "dead-end" that hinders subsequent trophic diversification. For this study we investigated trophic niche evolution in Clupeoidei (anchovies, sardines, herrings, and their relatives) and tested the hypotheses that herbivory is negatively correlated with salinity and latitude using a novel, time-calibrated molecular phylogeny, trophic guilds delimited using diet data and cluster analysis, and standard and phylogenetically-informed statistical methods. We identified eight clupeoid trophic guilds: molluscivore, terrestrial invertivore, phytoplanktivore, macroalgivore, detritivore, piscivore, crustacivore, and zooplanktivore. Standard statistical methods found a significant negative correlation between latitude and the proportion of herbivorous clupeoids (herbivorous clupeoid species/total clupeoid species), but no significant difference in the proportion of herbivorous clupeoids between freshwater and marine environments. Phylogenetic least squares regression did not identify significant negative correlations between latitude and herbivory or salinity and herbivory. In clupeoids there were five evolutionary transitions from non-herbivore to herbivore guilds and no transitions from herbivore to non-herbivore guilds. There were no transitions to zooplanktivore, the most common guild, but it gave rise to all trophic guilds, except algivore, at least once. Transitions to herbivory comprised a significantly greater proportion of diet transitions in tropical and subtropical (<35°) relative to temperate areas (>35°). Our findings suggest cold temperatures may constrain the evolution of herbivory and that herbivory might act as an evolutionary "dead-end" that hinders subsequent trophic diversification, while zooplanktivory acts as an evolutionary "cradle" that facilitates trophic diversification.


Subject(s)
Ecosystem , Fishes/physiology , Herbivory/physiology , Phylogeny , Animals , Calibration , Diet , Species Specificity , Time Factors
7.
Mol Phylogenet Evol ; 70: 47-56, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24045103

ABSTRACT

The combtooth blennies (f. Blenniidae) is a diverse family of primarily marine fishes with approximately 387 species that inhabit subtidal, intertidal, supralittoral habitats in tropical and warm temperate regions throughout the world. The Blenniidae has typically been divided into six groups based on morphological characters: Blenniini, Nemophini, Omobranchini, Phenablenniini, Parablenniini, and Salariini. There is, however, considerable debate over the validity of these groups and their relationships. Since little is known about the relationships in this group, other aspects of their evolutionary history, such as habitat evolution and remain unexplored. Herein, we use Bayesian and maximum likelihood analyses of four nuclear loci (ENC1, myh6, ptr, and tbr1) from 102 species, representing 41 genera, to resolve the phylogeny of the Blenniidae, determine the validity of the previously recognized groupings, and explore the evolution of habitat association using ancestral state reconstruction. Bayesian and maximum likelihood analyses of the resulting 3100bp of DNA sequence produced nearly identical topologies, and identified many well-supported clades. Of these clades, Nemophini was the only traditionally recognized group strongly supported as monophyletic. This highly resolved and thoroughly sampled blenniid phylogeny provides strong evidence that the traditional rank-based classification does not adequately delimit monophyletic groups with the Blenniidae. This phylogeny redefines the taxonomy of the group and supports the use of 13 unranked clades for the classification of blenniids. Ancestral state reconstructions identified four independent invasions of intertidal habitats within the Blenniidae, and subsequent invasions into supralittoral and freshwater habitats from these groups. The independent invasions of intertidal habitats are likely to have played an important role in the evolutionary history of blennies.


Subject(s)
Perciformes/genetics , Phylogeny , Animals , Bayes Theorem , Ecosystem , Likelihood Functions , Perciformes/anatomy & histology , Perciformes/classification , Sequence Analysis, DNA
8.
Mol Phylogenet Evol ; 56(3): 905-17, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20457263

ABSTRACT

Deep-sea Lantern Sharks (Etmopteridae) represent the most speciose family within Dogfish Sharks (Squaliformes). We compiled an extensive DNA dataset to estimate the first molecular phylogeny of the family and to provide node age estimates for the origin and diversification for this enigmatic group. Phylogenetic inferences yielded consistent and well supported hypotheses based on 4685bp of both nuclear (RAG1) and mitochondrial genes (COI, 12S-partial 16S, tRNAVal and tRNAPhe). The monophyletic family Etmopteridae originated in the early Paleocene around the C/T boundary, and split further into four morphologically distinct lineages supporting three of the four extant genera. The exception is Etmopterus which is paraphyletic with respect to Miroscyllium. Subsequent rapid radiation within Etmopterus in the Oligocene/early Miocene was accompanied by divergent evolution of bioluminescent flank markings which morphologically characterize the four lineages. Higher squaliform interrelationships could not be satisfactorily identified, but convergent evolution of bioluminescence in Dalatiidae and Etmopteridae is supported.


Subject(s)
Evolution, Molecular , Phylogeny , Sharks/genetics , Animals , Bayes Theorem , Cell Nucleus/genetics , DNA, Mitochondrial/genetics , Fossils , Genes, RAG-1 , Likelihood Functions , Models, Genetic , Sequence Alignment , Sequence Analysis, DNA , Sharks/classification
9.
Mol Phylogenet Evol ; 34(3): 569-83, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15683930

ABSTRACT

Using nuclear coding and mitochondrial ribosomal genes we try to clarify relationships within Carcharhiniformes with special focus on the two most problematic groups: scyliorhinids and triakids. The mitochondrial aligned sequences are 1542 bp long, and include principally portion of 16S rRNA gene. They are obtained for two outgroup species and 43 Carcharhiniformes species, covering 5 of the 8 families and 15 of the 48 genera of the order. The nuclear RAG1 sequences are 1454 bp long, and are obtained for 17 species representative of the diversity of all species sampled. We used Maximum Parsimony and Maximum Likelihood criteria for tree reconstruction. Paraphylies within the family Scyliorhinidae was proposed for the first time by Maisey [Zool. J. Linn. Soc. 82, 33, 1984] in a morphological cladistic analysis. This result has never been proposed again until recently from molecular phylogenies [Mol. Phylogenet. Evol. 31, 214, 2004]. Here, independent and simultaneous analyses of nuclear and mitochondrial data are congruent in supporting the paraphyly of scyliorhinids. Two groups of scyliorhinids are obtained, thoroughly in line with discrimination proposed by previous authors, based on presence/absence of supraorbital crests on the chondrocranium. The first group (Scyliorhinus+Cephaloscyllium) is basal within carcharhiniforms and the second group (Apristurus+Asymbolus+Cephalurus+Galeus+Parmaturus) is sister group of all the other families investigated (Carcharhinidae, Proscyllidae, Pseudotriakidae, and Triakidae). The paraphyly of triakids appeared probable but more investigations are needed. In conclusion several independent morphological and molecular phylogenetic studies support paraphyly within scyliorhinids. So we propose a new classification for the group, with the redefinition of the family Scyliorhinidae sensu stricto and the resurrection of the family Pentanchidae with a new definition.


Subject(s)
Mitochondria/genetics , Sharks/genetics , Animals , Base Sequence , Genes, RAG-1 , Likelihood Functions , Phylogeny , Polymorphism, Genetic , RNA, Ribosomal, 16S , Sequence Alignment , Sharks/classification
SELECTION OF CITATIONS
SEARCH DETAIL
...