Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Cell Biol ; 184: 69-84, 2024.
Article in English | MEDLINE | ID: mdl-38555159

ABSTRACT

Among myeloid regulatory cells (MRCs), some particular subsets termed myeloid-derived suppressor cells (MDSCs) have been described. They are suppressor myeloid cells characterized by their ability to regulate innate and adaptive immune responses and known to accumulate in the context of chronic diseases and cancer. The lack of specific markers makes their classification difficult and requires functional studies to distinguish them from other myeloid cells. In this sense, the in vitro analysis of the proliferation of T lymphocytes cultured with MDSCs provides information about the regulatory function of these cells. Here, we provide a detailed protocol to assess the ability of human Mo-MDSCs to suppress T cell proliferation in vitro after obtaining Mo-MDSCs and CD4+T cell from peripheral blood.


Subject(s)
Myeloid-Derived Suppressor Cells , Humans , CD4-Positive T-Lymphocytes , Myeloid Cells , CD8-Positive T-Lymphocytes , Cell Proliferation/physiology
2.
Mol Cancer ; 22(1): 26, 2023 02 04.
Article in English | MEDLINE | ID: mdl-36739406

ABSTRACT

Several mechanisms and cell types are involved in the regulation of the immune response. These include mostly regulatory T cells (Tregs), regulatory macrophages (Mregs), myeloid suppressor cells (MDSCs) and other regulatory cell types such as tolerogenic dendritic cells (tolDCs), regulatory B cells (Bregs), and mesenchymal stem cells (MSCs). These regulatory cells, known for their ability to suppress immune responses, can also suppress the anti-tumor immune response. The infiltration of many regulatory cells into tumor tissues is therefore associated with a poor prognosis. There is growing evidence that elimination of Tregs enhances anti-tumor immune responses. However, the systemic depletion of Treg cells can simultaneously cause deleterious autoimmunity. Furthermore, since regulatory cells are characterized by their high level of expression of immune checkpoints, it is also expected that immune checkpoint inhibitors perform part of their function by blocking these molecules and enhancing the immune response. This indicates that immunotherapy does not only act by activating specific effector T cells but can also directly or indirectly attenuate the suppressive activity of regulatory cells in tumor tissues. This review aims to draw together our current knowledge about the effect of immunotherapy on the various types of regulatory cells, and how these effects may be beneficial in the response to immunotherapy.


Subject(s)
Immunotherapy , Neoplasms , Humans , Neoplasms/pathology , Immunity , CD8-Positive T-Lymphocytes , T-Lymphocytes, Regulatory , Tumor Microenvironment
3.
J Pers Med ; 11(7)2021 Jun 24.
Article in English | MEDLINE | ID: mdl-34202487

ABSTRACT

Expanded CD4+CD28null T lymphocytes are found in the tissues and peripheral blood of patients with many autoimmune diseases, such as rheumatoid arthritis (RA). These highly differentiated cells present potent inflammatory activity and capability to induce tissue destruction, which has been suggested to predispose to the development of more aggressive disease. In fact, preferential migration to inflammatory sites has been proposed to be a contributing factor in the progression of autoimmune and cardiovascular diseases frequently found in these patients. The functional activity of CD4+CD28null T lymphocytes is largely dependent on interleukin 15 (IL-15), and this cytokine may also act as a selective attractor of these cells to local inflammatory infiltrates in damaged tissues. We have analysed, in RA patients, the migratory properties and transcriptional motility profile of CD4+CD28null T lymphocytes compared to their counterparts CD28+ T lymphocytes and the enhancing role of IL-15. Identification of the pathways involved in this process will allow us to design strategies directed to block effector functions that CD4+CD28null T lymphocytes have in the target tissue, which may represent therapeutic approaches in this immune disorder.

4.
Front Immunol ; 12: 788851, 2021.
Article in English | MEDLINE | ID: mdl-35185863

ABSTRACT

Lung transplantation remains as a primary treatment for end-stage lung diseases. Although remarkable improvement has been achieved due to the immunosuppressive protocols, long-term survival for lung transplant recipients (LTR) is still limited. In the last few decades, an increasing interest has grown in the study of dysregulation of immune mechanisms underlying allograft failure. In this regard, myeloid-derived suppressor cells (MDSCs) could play an important role in the promotion of graft tolerance due to their immune regulatory function. Here, we describe for the first time circulating subsets MDSCs from LTR at several time points and we evaluate the relationship of MDSCs with sort-term lung transplant outcomes. Although no effect of MDSCs subsets on short-term clinical events was observed, our results determine that Mo-MDSCs frequencies are increased after acute cellular rejection (ACR), suggesting a possible role for Mo-MDSCs in the development of chronic lung allograft dysfunction (CLAD). Therefore, whether MDSCs subsets play a role as biomarkers of chronic rejection remains unknown and requires further investigations. Also, the effects of the different immunosuppressive treatments on these subpopulations remain under research and further studies are needed to establish to what extend MDSCs immune modulation could be responsible for allograft acceptance.


Subject(s)
Myeloid-Derived Suppressor Cells , Humans , Immune Tolerance , Immunosuppression Therapy , Immunosuppressive Agents/pharmacology , Immunosuppressive Agents/therapeutic use , Lung , Transplant Recipients
5.
Front Immunol ; 11: 643, 2020.
Article in English | MEDLINE | ID: mdl-32425928

ABSTRACT

Myeloid-derived suppressor cells (MDSC) represent a heterogeneous group of myeloid regulatory cells that were originally described in cancer. Several studies in animal models point to MDSC as important players in the induction of allograft tolerance due to their immune modulatory function. Most of the published studies have been performed in animal models, and the data addressing MDSCs in human organ transplantation are scarce. We evaluated the phenotype and function of different MDSCs subsets in 38 kidney transplant recipients (KTRs) at different time points. Our data indicate that monocytic MDSCs (Mo-MDSC) increase in KTR at 6 and 12 months posttransplantation. On the contrary, the percentages of polymorphonuclear MDSC (PMN-MDSC) and early-stage MDSC (e-MDSC) are not significantly increased. We evaluated the immunosuppressive activity of Mo-MDSC in KTR and confirmed their ability to increase regulatory T cells (Treg) in vitro. Interestingly, when we compared the ability of Mo-MDSC to suppress T cell proliferation, we observed that tacrolimus, but not rapamycin-treated KTR, was able to inhibit CD4+ T cell proliferation in vitro. This indicates that, although mTOR inhibitors are widely regarded as supportive of regulatory responses, rapamycin may impair Mo-MDSC function, and suggests that the choice of immunosuppressive therapy may determine the tolerogenic pathway and participating immune cells that promote organ transplant acceptance in KTR.


Subject(s)
Immunosuppressive Agents/therapeutic use , Kidney Transplantation , Myeloid-Derived Suppressor Cells/immunology , Adult , Aged , Female , Humans , Lymphocyte Activation , Male , Middle Aged , Myeloid-Derived Suppressor Cells/drug effects , Sirolimus/pharmacology , T-Lymphocytes/immunology , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/physiology , Transplantation Tolerance
6.
PLoS One ; 13(4): e0194789, 2018.
Article in English | MEDLINE | ID: mdl-29641536

ABSTRACT

Anti-CMV (cytomegalovirus) antibody titers are related to immune alterations and increased risk of mortality. To test whether they represent a marker of infection history, we analyzed the effect of viral reactivations on the production of specific antibodies in kidney transplant patients. We quantified CMV-DNAemia and antibody titers in 58 kidney transplant patients before transplantation and during a follow-up of 315 days (standard deviation, SD: 134.5 days). In order to calculate the intensity of the infection, we plotted the follow-up time of the infection on the x-axis and the number of DNA-CMV copies on the y-axis and calculated the area under the curve (CMV-AUC). The degree of T-lymphocyte differentiation was analyzed with flow cytometry, the cells were labelled with different monoclonal antibodies in order to distinguish their differentiation state, from naive T-cells to senescent T-cells. Peak viremia was significantly higher in patients experiencing a primary infection (VI) compared to patients experiencing viral reactivation (VR). Our data indicate that the overall CMV viral load over the course of a primary infection is significantly higher than in a reactivation of a previously established infection. Whereas patients who experienced an episode of CMV reactivation during the course of our observation showed increased levels of CMV-specific antibodies, patients who did not experience CMV reactivation (WVR) showed a drop in CMV antibody levels that corresponds to an overall drop in antibody levels, probably due to the continuing immunosuppression after the renal transplant. We found a positive correlation between the CMV viremia over the course of the infection or reactivation and the CMV-specific antibody titers in the examined patients. We also observed a positive correlation between anti-CMV titers and T-cell differentiation. In conclusion, our data show that anti-CMV antibody titers are related to the course of CMV infection in kidney transplant patients.


Subject(s)
Antibodies, Viral/blood , Cytomegalovirus Infections/immunology , Kidney Failure, Chronic/complications , Kidney Transplantation/adverse effects , Virus Activation , Adult , Aged , Area Under Curve , CD8-Positive T-Lymphocytes/immunology , Cytomegalovirus , DNA, Viral , Female , Follow-Up Studies , HLA Antigens/immunology , Humans , Immunophenotyping , Immunosuppression Therapy , Kidney Failure, Chronic/surgery , Kidney Failure, Chronic/virology , Male , Middle Aged , Viral Load , Viremia/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...