Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Sensors (Basel) ; 23(18)2023 Sep 07.
Article in English | MEDLINE | ID: mdl-37765802

ABSTRACT

The purpose was to assess the concurrent validity and reliability of two portable powermeters (PowerTap vs. Power2Max) in different types of cycling efforts. Ten cyclists performed two submaximal, one incremental maximal and two supramaximal sprint tests on an ergometer, while pedaling power and cadence were registered by both powermeters and a cadence sensor (GarminGSC10). During the submaximal and incremental maximal tests, significant correlations were found for power and cadence data (r = 0.992-0.997 and 0.996-0.998, respectively, p < 0.001), with a slight power underestimation by PowerTap (0.7-1.8%, p < 0.01) and a high reliability of both powermeters (p < 0.001) for measurement of power (ICC = 0.926 and 0.936, respectively) and cadence (ICC = 0.969 and 0.970, respectively). However, during the supramaximal sprint test, their agreement to measure power and cadence was weak (r = 0.850 and -0.253, p < 0.05) due to the low reliability of the cadence measurements (ICC between 0.496 and 0.736, and 0.574 and 0.664, respectively; p < 0.05) in contrast to the high reliability of the cadence sensor (ICC = 0.987-0.994). In conclusion, both powermeters are valid and reliable for measuring power and cadence during continuous cycling efforts (~100-450 W), but questionable during sprint efforts (>500 W), where they are affected by the gear ratio used (PowerTap) and by their low accuracy in cadence recording (PowerTap and Power2Max).

2.
Article in English | MEDLINE | ID: mdl-36554327

ABSTRACT

Various power meters are used to assess road-cycling performance in training and competition, but no previous study has analyzed their interchangeability in these conditions. Therefore, the purpose was to compare the data obtained from two different power meters (PowerTap vs. Power2Max) during cycling road races. A national-level under-23 male competitive cyclist completed six road-cycling official competitions (five road races and one individual time trial), in which power output was simultaneously registered with the two power meters. After this, the main power output variables were analyzed with the same software. The average and critical power obtained from the PowerTap power meter were slightly lower than from the Power2Max power meter (3.56 ± 0.68 and 3.62 ± 0.74 W·kg-1, 5.06 and 5.11 W·kg-1, respectively), and the correlations between both devices were very high (r ≥ 0.996 and p < 0.001). In contrast, the PowerTap power meter registered a significantly higher (p < 0.05) percentage of time at <0.75 and >7.50 W·kg-1 and power profile at 1, 5 and 10 s. In conclusion, the data obtained in competitions by the two power meters were interchangeable. Nevertheless, the Power2Max power meter underestimated the pedaling power during short and high-intensity intervals (≤10.0 s and >7.50 W·kg-1) compared to the PowerTap power meter. Therefore, the analysis of these efforts should be treated with caution.


Subject(s)
Bicycling , Male , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...