Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Language
Publication year range
1.
Ecol Appl ; 31(4): e02262, 2021 06.
Article in English | MEDLINE | ID: mdl-33222325

ABSTRACT

Coral bleaching is the single largest global threat to coral reefs worldwide. Integrating the diverse body of work on coral bleaching is critical to understanding and combating this global problem. Yet investigating the drivers, patterns, and processes of coral bleaching poses a major challenge. A recent review of published experiments revealed a wide range of experimental variables used across studies. Such a wide range of approaches enhances discovery, but without full transparency in the experimental and analytical methods used, can also make comparisons among studies challenging. To increase comparability but not stifle innovation, we propose a common framework for coral bleaching experiments that includes consideration of coral provenance, experimental conditions, and husbandry. For example, reporting the number of genets used, collection site conditions, the experimental temperature offset(s) from the maximum monthly mean (MMM) of the collection site, experimental light conditions, flow, and the feeding regime will greatly facilitate comparability across studies. Similarly, quantifying common response variables of endosymbiont (Symbiodiniaceae) and holobiont phenotypes (i.e., color, chlorophyll, endosymbiont cell density, mortality, and skeletal growth) could further facilitate cross-study comparisons. While no single bleaching experiment can provide the data necessary to determine global coral responses of all corals to current and future ocean warming, linking studies through a common framework as outlined here, would help increase comparability among experiments, facilitate synthetic insights into the causes and underlying mechanisms of coral bleaching, and reveal unique bleaching responses among genets, species, and regions. Such a collaborative framework that fosters transparency in methods used would strengthen comparisons among studies that can help inform coral reef management and facilitate conservation strategies to mitigate coral bleaching worldwide.


Subject(s)
Anthozoa , Dinoflagellida , Animals , Coral Reefs , Temperature
2.
Proc Biol Sci ; 284(1868)2017 Dec 06.
Article in English | MEDLINE | ID: mdl-29212723

ABSTRACT

Light and temperature are major drivers in the ecology and biogeography of symbiotic dinoflagellates living in corals and other cnidarians. We examined variations in physiology among 11 strains comprising five species of clade A Symbiodinium We grew cultures at 26°C (control) and 32°C (high temperature) over a duration of 18 days while measuring growth and photochemical efficiency (Fv /Fm ). Responses to thermal stress ranged from susceptible to tolerant across species and strains. Most strains exhibited a decrease in cell densities and Fv /Fm when grown at 32°C. Tolerance to high temperature (T32) was calculated for all strains, ranging from 0 (unable to survive at high temperature) to 1 (able survive at high temperature). There was substantial variation in thermotolerance across species and among strains. One strain had a T32 close to 1, indicating that growth was not reduced at 32°C for only this one strain. To evaluate the combined effect of temperature and light on physiological stress, we selected three strains with different levels of thermotolerance (tolerant, intermediate and susceptible) and grew them under five different light intensities (65, 80, 100, 240 and 443 µmol quanta m-2 s-1) at 26 and 32°C. High irradiance exacerbated the effect of high temperature, particularly in strains from thermally sensitive species. This work further supports the recognition that broad physiological differences exist not only among species within Symbiodinium clades, but also among strains within species demonstrating that thermotolerance varies widely between species and among strains within species.


Subject(s)
Acclimatization , Dinoflagellida/physiology , Hot Temperature , Light , Stress, Physiological , Thermotolerance
3.
J. venom. anim. toxins incl. trop. dis ; 18(1): 109-115, 2012. ilus
Article in English | LILACS | ID: lil-618197

ABSTRACT

Structural characteristics of discharged and undischarged nematocysts from the hydrozoans Millepora alcicornis and Millepora complanata, two fire corals collected in the Mexican Caribbean, were examined using transmission electron, scanning and light microscopy. In this study, we report for the first time images of the nematocysts found in these Mexican Caribbean venomous species. Two types of nematocysts were observed in both species, the more abundant identified as macrobasic mastigophore and the other a stenotele type. Macrobasic mastigophores were present in medium and large size classes while stenoteles appeared in only one size.


Subject(s)
Animals , Cnidarian Venoms , Hydrozoa , Microscopy, Electron, Transmission/methods
4.
Mol Ecol ; 19(6): 1174-86, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20149089

ABSTRACT

A mutualistic relationship between reef-building corals and endosymbiotic dinoflagellates (Symbiodinium spp.) forms the basis for the existence of coral reefs. Genotyping tools for Symbiodinium spp. have added a new level of complexity to studies concerning cnidarian growth, nutrient acquisition, and stress. For example, the response of the coral holobiont to thermal stress is connected to the host-Symbiodinium genotypic combination, as different partnerships can have different bleaching susceptibilities. In this study, we monitored Symbiodinium physiological parameters and profiled the coral host transcriptional responses in acclimated, thermally stressed, and recovered fragments of the coral Montastraea faveolata using a custom cDNA gene expression microarray. Interestingly, gene expression was more similar among samples with the same Symbiodinium content rather than the same experimental condition. In order to discount for host-genotypic effects, we sampled fragments from a single colony of M. faveolata containing different symbiont types, and found that the host transcriptomic states grouped according to Symbiodinium genotype rather than thermal stress. As the first study that links coral host transcriptomic patterns to the clade content of their Symbiodinium community, our results provide a critical step to elucidating the molecular basis of the apparent variability seen among different coral-Symbiodinium partnerships.


Subject(s)
Anthozoa/genetics , Dinoflagellida/physiology , Gene Expression Profiling , Acclimatization/genetics , Animals , Dinoflagellida/classification , Dinoflagellida/genetics , Genotype , Hot Temperature , Oligonucleotide Array Sequence Analysis , Symbiosis
5.
Science ; 318(5857): 1737-42, 2007 Dec 14.
Article in English | MEDLINE | ID: mdl-18079392

ABSTRACT

Atmospheric carbon dioxide concentration is expected to exceed 500 parts per million and global temperatures to rise by at least 2 degrees C by 2050 to 2100, values that significantly exceed those of at least the past 420,000 years during which most extant marine organisms evolved. Under conditions expected in the 21st century, global warming and ocean acidification will compromise carbonate accretion, with corals becoming increasingly rare on reef systems. The result will be less diverse reef communities and carbonate reef structures that fail to be maintained. Climate change also exacerbates local stresses from declining water quality and overexploitation of key species, driving reefs increasingly toward the tipping point for functional collapse. This review presents future scenarios for coral reefs that predict increasingly serious consequences for reef-associated fisheries, tourism, coastal protection, and people. As the International Year of the Reef 2008 begins, scaled-up management intervention and decisive action on global emissions are required if the loss of coral-dominated ecosystems is to be avoided.


Subject(s)
Anthozoa , Climate , Ecosystem , Greenhouse Effect , Seawater/chemistry , Animals , Anthozoa/growth & development , Anthozoa/physiology , Atmosphere , Carbon Dioxide , Dinoflagellida/physiology , Eukaryota/physiology , Fishes , Forecasting , Hydrogen-Ion Concentration , Oceans and Seas , Temperature
6.
Proc Biol Sci ; 271(1549): 1757-63, 2004 Aug 22.
Article in English | MEDLINE | ID: mdl-15306298

ABSTRACT

Symbiotic reef corals occupy the entire photic zone; however, most species have distinct zonation patterns within the light intensity gradient. It is hypothesized that the presence of specific symbionts adapted to different light regimes may determine the vertical distribution of particular hosts. We have tested this hypothesis by genetic and in situ physiological analyses of the algal populations occupying two dominant eastern Pacific corals, over their vertical distribution in the Gulf of California. Our findings indicate that each coral species hosts a distinct algal taxon adapted to a particular light regime. The differential use of light by specific symbiotic dinoflagellates constitutes an important axis for niche diversification and is sufficient to explain the vertical distribution patterns of these two coral species.


Subject(s)
Adaptation, Physiological/physiology , Anthozoa/microbiology , Dinoflagellida/physiology , Light , Symbiosis , Animals , Base Sequence , Cluster Analysis , Dinoflagellida/genetics , Fluorescence , Molecular Sequence Data , Pacific Ocean , Polymorphism, Restriction Fragment Length , RNA, Ribosomal, 5.8S/genetics , Sequence Analysis, DNA , Species Specificity
7.
Proc Natl Acad Sci U S A ; 89(21): 10302-5, 1992 Nov 01.
Article in English | MEDLINE | ID: mdl-11607337

ABSTRACT

Elevated temperature (28-34 degrees C) has been hypothesized as the primary cause of the loss of algal endosymbionts in coral reef-associated invertebrates, a phenomenon observed on a world-wide scale over the last decade. In past studies of this "bleaching" phenomenon, there has been an underlying assumption that temperature adversely affects the animal hosts, the algae thereby being relegated to a more passive role. Because photosynthesis is a sensitive indicator of thermal stress in plants and has a central role in the nutrition of symbiotic invertebrates, we have tested the hypothesis that elevated temperature adversely affects photosynthesis in the symbiotic dinoflagellate Symbiodinium microadriaticum. The results, based on analyses of light-mediated O2 evolution and in vivo fluorescence, indicate that photosynthesis is impaired at temperatures above 30 degrees C and ceases completely at 34-36 degrees C. These observations are discussed in the context of possible mechanisms that may function in the disassociation of algal-invertebrate symbioses in response to elevated temperature.

SELECTION OF CITATIONS
SEARCH DETAIL
...