Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Int J Mol Sci ; 25(2)2024 Jan 13.
Article in English | MEDLINE | ID: mdl-38256085

ABSTRACT

Chromatin immunoprecipitation followed by massively parallel DNA sequencing (ChIP-seq) is a central genome-wide method for in vivo analyses of DNA-protein interactions in various cellular conditions. Numerous studies have demonstrated the complex contextual organization of ChIP-seq peak sequences and the presence of binding sites for transcription factors in them. We assessed the dependence of the ChIP-seq peak score on the presence of different contextual signals in the peak sequences by analyzing these sequences from several ChIP-seq experiments using our fully enumerative GPU-based de novo motif discovery method, Argo_CUDA. Analysis revealed sets of significant IUPAC motifs corresponding to the binding sites of the target and partner transcription factors. For these ChIP-seq experiments, multiple regression models were constructed, demonstrating a significant dependence of the peak scores on the presence in the peak sequences of not only highly significant target motifs but also less significant motifs corresponding to the binding sites of the partner transcription factors. A significant correlation was shown between the presence of the target motifs FOXA2 and the partner motifs HNF4G, which found experimental confirmation in the scientific literature, demonstrating the important contribution of the partner transcription factors to the binding of the target transcription factor to DNA and, consequently, their important contribution to the peak score.


Subject(s)
Chromatin Immunoprecipitation Sequencing , Transcription Factors , Chromatin Immunoprecipitation , Sequence Analysis, DNA , Transcription Factors/genetics , DNA/genetics
2.
Front Genet ; 12: 662770, 2021.
Article in English | MEDLINE | ID: mdl-34290736

ABSTRACT

Genetic causes of the global decline in male fertility are among the hot spots of scientific research in reproductive genetics. The most common way to evaluate male fertility in clinical trials is to determine semen quality. Lower semen quality is very often accompanied by subfertility or infertility, occurs in many diseases and can be caused by many factors, including genetic ones. The following forms of lowered semen quality (pathozoospermia) are known: azoospermia, oligozoospermia, asthenozoospermia, teratozoospermia, and some combined forms. To systematize information about the genetic basis of impaired spermatogenesis, we created a catalog of human genes associated with lowered semen quality (HGAPat) and analyzed their functional characteristics. The catalog comprises data on 126 human genes. Each entry of the catalog describes an association between an allelic variant of the gene and a particular form of lowered semen quality, extracted from the experimental study. Most genes included into the catalog are located on autosomes and are associated with such pathologies as non-obstructive azoospermia, oligozoospermia or asthenozoospermia. Slightly less than half of the included genes (43%) are expressed in the testes in a tissue-specific manner. Functional annotation of genes from the catalog showed that spermatogenic failure can be associated with mutations in genes that control biological processes essential for spermiogenesis (regulating DNA metabolism, cell division, formation of cellular structures, which provide cell movement) as well as with mutations in genes that control cellular responses to unfavorable conditions (stress factors, including oxidative stress and exposure to toxins).

3.
Int J Mol Sci ; 22(14)2021 Jul 08.
Article in English | MEDLINE | ID: mdl-34298968

ABSTRACT

Mitochondrial dysfunction is considered the major contributor to skeletal muscle wasting in different conditions. Genetically determined neuromuscular disorders occur as a result of mutations in the structural proteins of striated muscle cells and therefore are often combined with cardiac phenotype, which most often manifests as a cardiomyopathy. The specific roles played by mitochondria and mitochondrial energetic metabolism in skeletal muscle under muscle-wasting conditions in cardiomyopathies have not yet been investigated in detail, and this aspect of genetic muscle diseases remains poorly characterized. This review will highlight dysregulation of mitochondrial representation and bioenergetics in specific skeletal muscle disorders caused by mutations that disrupt the structural and functional integrity of muscle cells.


Subject(s)
Cardiomyopathies/genetics , Heart/physiopathology , Mitochondria, Muscle/metabolism , Muscle, Skeletal/metabolism , Neuromuscular Diseases/genetics , Animals , Cardiomyopathies/metabolism , Cardiomyopathies/pathology , Disease Models, Animal , Energy Metabolism , Humans , Mice , Mitochondria, Heart/metabolism , Muscle Proteins/deficiency , Muscle Proteins/genetics , Muscle Proteins/physiology , Muscle, Skeletal/ultrastructure , Muscular Atrophy/metabolism , Muscular Dystrophies/genetics , Muscular Dystrophies/metabolism , Muscular Dystrophies/pathology , Muscular Dystrophy, Animal/genetics , Muscular Dystrophy, Animal/metabolism , Muscular Dystrophy, Animal/pathology , Neuromuscular Diseases/metabolism , Neuromuscular Diseases/pathology , Phenotype
4.
Biomolecules ; 11(6)2021 05 21.
Article in English | MEDLINE | ID: mdl-34063883

ABSTRACT

Obesity and type 2 diabetes mellitus (T2DM) are often combined and pathologically affect many tissues due to changes in circulating bioactive molecules. In this work, we evaluated the effect of blood plasma from obese (OB) patients or from obese patients comorbid with diabetes (OBD) on skeletal muscle function and metabolic state. We employed the mouse myoblasts C2C12 differentiation model to test the regulatory effect of plasma exposure at several levels: (1) cell morphology; (2) functional activity of mitochondria; (3) expression levels of several mitochondria regulators, i.e., Atgl, Pgc1b, and miR-378a-3p. Existing databases were used to computationally predict and analyze mir-378a-3p potential targets. We show that short-term exposure to OB or OBD patients' plasma is sufficient to affect C2C12 properties. In fact, the expression of genes that regulate skeletal muscle differentiation and growth was downregulated in both OB- and OBD-treated cells, maximal mitochondrial respiration rate was downregulated in the OBD group, while in the OB group, a metabolic switch to glycolysis was detected. These alterations correlated with a decrease in ATGL and Pgc1b expression in the OB group and with an increase of miR-378a-3p levels in the OBD group.


Subject(s)
Cell Differentiation/drug effects , Diabetes Mellitus/blood , Energy Metabolism/drug effects , MicroRNAs/biosynthesis , Mitochondria, Muscle/metabolism , Myoblasts, Skeletal/metabolism , Obesity/blood , Plasma , Adult , Aged , Animals , Cell Line , Female , Humans , Lipase/biosynthesis , Male , Mice , Middle Aged , Nuclear Proteins/biosynthesis , Transcription Factors/biosynthesis
5.
BMC Genet ; 21(Suppl 1): 89, 2020 10 22.
Article in English | MEDLINE | ID: mdl-33092533

ABSTRACT

BACKGROUND: In population ecology, the concept of reproductive potential denotes the most vital indicator of chances to produce and sustain a healthy descendant until his/her reproductive maturity under the best conditions. This concept links quality of life and longevity of an individual with disease susceptibilities encoded by his/her genome. Female reproductive potential has been investigated deeply, widely, and comprehensively in the past, but the male one has not received an equal amount of attention. Therefore, here we focused on the human Y chromosome and found candidate single-nucleotide polymorphism (SNP) markers of male reproductive potential. RESULTS: Examining in silico (i.e., using our earlier created Web-service SNP_TATA_Z-tester) all 1206 unannotated SNPs within 70 bp proximal promoters of all 63 Y-linked genes, we found 261 possible male-reproductive-potential SNP markers that can significantly alter the binding affinity of TATA-binding protein (TBP) for these promoters. Among them, there are candidate SNP markers of spermatogenesis disorders (e.g., rs1402972626), pediatric cancer (e.g., rs1483581212) as well as male anxiety damaging family relationships and mother's and children's health (e.g., rs187456378). First of all, we selectively verified in vitro both absolute and relative values of the analyzed TBP-promoter affinity, whose Pearson's coefficients of correlation between predicted and measured values were r = 0.84 (significance p <  0.025) and r = 0.98 (p <  0.025), respectively. Next, we found that there are twofold fewer candidate SNP markers decreasing TBP-promoter affinity relative to those increasing it, whereas in the genome-wide norm, SNP-induced damage to TBP-promoter complexes is fourfold more frequent than SNP-induced improvement (p <  0.05, binomial distribution). This means natural selection against underexpression of these genes. Meanwhile, the numbers of candidate SNP markers of an increase and decrease in male reproductive potential were indistinguishably equal to each other (p <  0.05) as if male self-domestication could have happened, with its experimentally known disruptive natural selection. Because there is still not enough scientific evidence that this could have happened, we discuss the human diseases associated with candidate SNP markers of male reproductive potential that may correspond to domestication-related disorders in pets. CONCLUSIONS: Overall, our findings seem to support a self-domestication syndrome with disruptive natural selection by male reproductive potential preventing Y-linked underexpression of a protein.


Subject(s)
Chromosomes, Human, Y/genetics , Reproduction/genetics , Selection, Genetic , Databases, Genetic , Domestication , Humans , Male , Polymorphism, Single Nucleotide , Promoter Regions, Genetic , TATA-Box Binding Protein/genetics
6.
Genes (Basel) ; 11(9)2020 09 07.
Article in English | MEDLINE | ID: mdl-32906763

ABSTRACT

Laminopathies are a family of monogenic multi-system diseases resulting from mutations in the LMNA gene which include a wide range of neuromuscular disorders. Although lamins are expressed in most types of differentiated cells, LMNA mutations selectively affect only specific tissues by mechanisms that remain largely unknown. We have employed the combination of functional in vitro experiments and transcriptome analysis in order to determine how two LMNA mutations associated with different phenotypes affect skeletal muscle development and metabolism. We used a muscle differentiation model based on C2C12 mouse myoblasts genetically modified with lentivirus constructs bearing wild-type human LMNA (WT-LMNA) or R482L-LMNA/G232E-LMNA mutations, linked to familial partial lipodystrophy of the Dunnigan type and muscular dystrophy phenotype accordingly. We have shown that both G232E/R482L-LMNA mutations cause dysregulation in coordination of pathways that control cell cycle dynamics and muscle differentiation. We have also found that R482/G232E-LMNA mutations induce mitochondrial uncoupling and a decrease in glycolytic activity in differentiated myotubes. Both types of alterations may contribute to mutation-induced muscle tissue pathology.


Subject(s)
Cell Differentiation , Energy Metabolism , Lamin Type A/genetics , Muscle Development , Muscle, Skeletal/pathology , Mutation , Transcriptome , Animals , HEK293 Cells , Humans , Lamin Type A/metabolism , Mice , Muscle, Skeletal/metabolism , Myoblasts/metabolism , Myoblasts/pathology
8.
Pediatr Res ; 88(1): 38-47, 2020 07.
Article in English | MEDLINE | ID: mdl-31952074

ABSTRACT

BACKGROUND: Tetralogy of Fallot (TF) is a severe congenital defect of heart development. Fine-tuned sequential activation of Notch signaling genes is responsible for proper heart chamber development. Mutations in Notch genes have been associated with TF. The aim of this study was to analyze the activity of the Notch pathway in cardiac mesenchymal cells derived from ventricular tissue of TF patients. METHODS: Cardiac mesenchymal cells were isolated from 42 TF patients and from 14 patients with ventricular septal defects (VSDs), used as a comparison group. The Notch pathway was analyzed by estimating the expression of Notch-related genes by qPCR. Differentiation and proliferation capacity of the cells was estimated. RESULTS: The TF-derived cells demonstrated a dysregulated pattern of Notch-related gene expression comparing to VSD-derived cells. Correlation of Notch signaling activation level by HEY1/HES1 expression level with proliferation and cardiogenic-like differentiation of cardiac mesenchymal cells was observed but not with clinical parameters nor with the age of the patients. CONCLUSIONS: The data suggest a contribution of dysregulated Notch signaling to the pathogenesis of tetralogy of Fallot and importance of Notch signaling level for the functional state of cardiac mesenchymal cells, which could be critical considering these cells for potential cell therapy approaches.


Subject(s)
Heart Septal Defects, Ventricular/metabolism , Mesenchymal Stem Cells/cytology , Myocardium/metabolism , Receptors, Notch/metabolism , Tetralogy of Fallot/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Cycle Proteins/metabolism , Cell Differentiation , Cell Proliferation , Female , Gene Expression Profiling , Gene Expression Regulation , Heart/physiopathology , Heart Ventricles/metabolism , Humans , Hypoxia , Immunophenotyping , Infant , Infant, Newborn , Male , Mutation , Signal Transduction , Transcription Factor HES-1/metabolism
9.
Nucleic Acids Res ; 47(21): e139, 2019 12 02.
Article in English | MEDLINE | ID: mdl-31750523

ABSTRACT

Recognition of composite elements consisting of two transcription factor binding sites gets behind the studies of tissue-, stage- and condition-specific transcription. Genome-wide data on transcription factor binding generated with ChIP-seq method facilitate an identification of composite elements, but the existing bioinformatics tools either require ChIP-seq datasets for both partner transcription factors, or omit composite elements with motifs overlapping. Here we present an universal Motifs Co-Occurrence Tool (MCOT) that retrieves maximum information about overrepresented composite elements from a single ChIP-seq dataset. This includes homo- and heterotypic composite elements of four mutual orientations of motifs, separated with a spacer or overlapping, even if recognition of motifs within composite element requires various stringencies. Analysis of 52 ChIP-seq datasets for 18 human transcription factors confirmed that for over 60% of analyzed datasets and transcription factors predicted co-occurrence of motifs implied experimentally proven protein-protein interaction of respecting transcription factors. Analysis of 164 ChIP-seq datasets for 57 mammalian transcription factors showed that abundance of predicted composite elements with an overlap of motifs compared to those with a spacer more than doubled; and they had 1.5-fold increase of asymmetrical pairs of motifs with one more conservative 'leading' motif and another one 'guided'.


Subject(s)
Algorithms , Chromatin Immunoprecipitation Sequencing/methods , Computational Biology/methods , Regulatory Elements, Transcriptional/genetics , Sequence Analysis, DNA/methods , Transcription Factors/genetics , Animals , Binding Sites , Datasets as Topic , Humans , Mice , Nucleotide Motifs/genetics
10.
Int J Mol Sci ; 20(21)2019 Nov 05.
Article in English | MEDLINE | ID: mdl-31694310

ABSTRACT

Abstract: Heart failure (HF) is associated with skeletal muscle wasting and exercise intolerance. This study aimed to evaluate the exercise-induced clinical response and histological alterations. One hundred and forty-four HF patients were enrolled. The individual training program was determined as a workload at or close to the lactate threshold (LT1); clinical data were collected before and after 12 weeks/6 months of training. The muscle biopsies from eight patients were taken before and after 12 weeks of training: histology analysis was used to evaluate muscle morphology. Most of the patients demonstrated a positive response after 12 weeks of the physical rehabilitation program in one or several parameters tested, and 30% of those showed improvement in all four of the following parameters: oxygen uptake (VO2) peak, left ventricular ejection fraction (LVEF), exercise tolerance (ET), and quality of life (QOL); the walking speed at LT1 after six months of training showed a significant rise. Along with clinical response, the histological analysis detected a small but significant decrease in both fiber and endomysium thickness after the exercise training course indicating the stabilization of muscle mechanotransduction system. Together, our data show that the beneficial effect of personalized exercise therapy in HF patients depends, at least in part, on the improvement in skeletal muscle physiological and biochemical performance.


Subject(s)
Exercise Therapy , Heart Failure/pathology , Heart Failure/rehabilitation , Muscle, Skeletal/pathology , Female , Heart Failure/physiopathology , Humans , Male , Middle Aged , Muscle, Skeletal/physiopathology , Oxygen Consumption , Precision Medicine , Quality of Life , Stroke Volume
11.
BMC Med Genomics ; 12(Suppl 3): 61, 2019 05 24.
Article in English | MEDLINE | ID: mdl-31122248

ABSTRACT

BACKGROUND: Tick-borne encephalitis (TBE) is a viral infectious disease caused by tick-borne encephalitis virus (TBEV). TBEV infection is responsible for a variety of clinical manifestations ranging from mild fever to severe neurological illness. Genetic factors involved in the host response to TBEV that may potentially play a role in the severity of the disease are still poorly understood. In this study, using whole-exome sequencing, we aimed to identify genetic variants and genes associated with severe forms of TBE as well as biological pathways through which the identified variants may influence the severity of the disease. RESULTS: Whole-exome sequencing data analysis was performed on 22 Russian patients with severe forms of TBE and 17 Russian individuals from the control group. We identified 2407 candidate genes harboring rare, potentially pathogenic variants in exomes of patients with TBE and not containing any rare, potentially pathogenic variants in exomes of individuals from the control group. According to DAVID tool, this set of 2407 genes was enriched with genes involved in extracellular matrix proteoglycans pathway and genes encoding proteins located at the cell periphery. A total of 154 genes/proteins from these functional groups have been shown to be involved in protein-protein interactions (PPIs) with the known candidate genes/proteins extracted from TBEVHostDB database. By ranking these genes according to the number of rare harmful minor alleles, we identified two genes (MSR1 and LMO7), harboring five minor alleles, and three genes (FLNA, PALLD, PKD1) harboring four minor alleles. When considering genes harboring genetic variants associated with severe forms of TBE at the suggestive P-value < 0.01, 46 genes containing harmful variants were identified. Out of these 46 genes, eight (MAP4, WDFY4, ACTRT2, KLHL25, MAP2K3, MBD1, OR10J1, and OR2T34) were additionally found among genes containing rare pathogenic variants identified in patients with TBE; and five genes (WDFY4, ALK, MAP4, BNIPL, EPPK1) were found to encode proteins that are involved in PPIs with proteins encoded by genes from TBEVHostDB. Three genes out of five (MAP4, EPPK1, ALK) were found to encode proteins located at cell periphery. CONCLUSIONS: Whole-exome sequencing followed by systems biology approach enabled to identify eight candidate genes (MAP4, WDFY4, ACTRT2, KLHL25, MAP2K3, MBD1, OR10J1, and OR2T34) that can potentially determine predisposition to severe forms of TBE. Analyses of the genetic risk factors for severe forms of TBE revealed a significant enrichment with genes controlling extracellular matrix proteoglycans pathway as well as genes encoding components of cell periphery.


Subject(s)
Encephalitis, Tick-Borne/genetics , Exome Sequencing , Molecular Sequence Annotation , Encephalitis, Tick-Borne/metabolism , Humans , Polymorphism, Single Nucleotide , Protein Interaction Mapping , Russia
12.
Interact Cardiovasc Thorac Surg ; 28(5): 803-811, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30602018

ABSTRACT

OBJECTIVES: Vascular wall calcification is a major pathophysiological component of atherosclerotic disease with many similarities to osteogenesis. Mechanical stress of the vascular wall may theoretically contribute to the proliferative processes by endothelial and interstitial cells. The aim of the study was to investigate the effect of mechanical stress on the expression of some calcification-related genes in primary human endothelial and interstitial cells, and how endothelial cells may stimulate the fibroblast and smooth muscle cells. METHODS: Human umbilical vein endothelial and interstitial cells were subjected to cyclic stretch using a FlexCell® bioreactor, and interstitial cells were also subjected to tensile strain in cultures embedded in 3-dimensional collagen gels. The medium from endothelial cells was used to stimulate the gel-cultured interstitial cells, or the endothelium was sown directly on top. For comparison, human endothelial and smooth muscle cells were isolated from aortic wall fragments of patients with and without the aortic aneurysm. The expression of genes was measured using quantitative PCR. RESULTS: Four hours of cyclic stretch applied to cultured endothelial cells upregulated the mRNA expression of bone morphogenetic protein 2 (BMP-2), a major procalcific growth factor. When applied to a 3-dimensional culture of vascular interstitial cells, the medium from prestretched endothelial cells decreased the expression of BMP-2 and periostin mRNA in the fibroblasts. The static tension in gel-cultured interstitial cells upregulated BMP-2 mRNA expression. The addition of endothelial cells on the top of this culture also reduced mRNA of anticalcific genes, periostin and osteopontin. Similar changes were observed in smooth muscle cells from human aortic aneurysms compared to cells from the healthy aorta. Aortic aneurysm endothelial cells also showed an increased expression of BMP-2 mRNA. CONCLUSIONS: Endothelial cells respond to mechanical stress by upregulation of pro-osteogenic factor BMP-2 mRNA and modulate the expression of other osteogenic factors in vascular interstitial cells. Endothelial cells may, thus, contribute to vascular calcification when exposed to mechanical stress.


Subject(s)
Bone Morphogenetic Protein 2/genetics , Endothelial Cells/metabolism , Endothelium, Vascular/metabolism , Gene Expression Regulation , Stress, Mechanical , Tunica Intima/metabolism , Vascular Calcification/genetics , Animals , Bone Morphogenetic Protein 2/biosynthesis , Cells, Cultured , Endothelial Cells/pathology , Endothelium, Vascular/pathology , Humans , RNA, Messenger/genetics , Tunica Intima/pathology , Up-Regulation , Vascular Calcification/metabolism , Vascular Calcification/pathology
13.
Atheroscler Suppl ; 35: e6-e13, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30172576

ABSTRACT

Cellular and molecular mechanisms of thoracic aortic aneurysm are still not clear and therapeutic approaches are mostly absent. The role of endothelial cells in aortic wall integrity is emerging from recent studies. Although Notch pathway ensures endothelial development and integrity, and NOTCH1 mutations have been associated with thoracic aortic aneurysms, the role of this pathway in aneurysm remains elusive. The purpose of the present work was to study functions of Notch genes in endothelial cells of patients with sporadic thoracic aortic aneurysm. Aortic endothelial cells were isolated from aortic tissue of patients with thoracic aortic aneurysm and healthy donors. Gene expression of Notch and related BMP and WNT/ß-catenin pathways was estimated by qPCR; WNT/ß-catenin signaling was studied by TCF-luciferase reporter. To study the stress-response the cells were subjected to laminar shear stress and the expression of corresponding genes was estimated by qPCR. Analyses of mRNA expression of Notch genes, Notch target genes and Notch related pathways showed that endothelial cells of aneurysm patients have dysregulated Notch/BMP/WNT pathways compared to donor cells. Activity of Wnt pathway was significantly elevated in endothelial cells of the patients. Cells from patients had attenuated activation of DLL4, SNAIL1, DKK1 and BMP2 in response to shear stress. In conclusion endothelial cells of the patients with thoracic aortic aneurysm have dysregulated Notch, BMP and WNT/ß-catenin related signaling. Shear stress-response and cross-talk between Notch and Wnt pathways that normally ensures aortic integrity and resistance of endothelial cells to stress is impaired in aneurysmal patients.


Subject(s)
Aorta, Thoracic/metabolism , Aortic Aneurysm, Thoracic/metabolism , Bone Morphogenetic Protein 2/metabolism , Endothelial Cells/metabolism , Receptors, Notch/metabolism , Wnt Signaling Pathway , Adaptor Proteins, Signal Transducing , Aged , Aged, 80 and over , Aorta, Thoracic/pathology , Aorta, Thoracic/physiopathology , Aortic Aneurysm, Thoracic/genetics , Aortic Aneurysm, Thoracic/pathology , Aortic Aneurysm, Thoracic/physiopathology , Bone Morphogenetic Protein 2/genetics , Calcium-Binding Proteins , Cells, Cultured , Endothelial Cells/pathology , Female , Gene Expression Regulation , Humans , Intercellular Signaling Peptides and Proteins/metabolism , Male , Mechanotransduction, Cellular , Middle Aged , Receptors, Notch/genetics , Regional Blood Flow , Snail Family Transcription Factors/metabolism , Stress, Mechanical , Wnt Signaling Pathway/genetics
14.
BMC Neurosci ; 19(Suppl 1): 16, 2018 04 19.
Article in English | MEDLINE | ID: mdl-29745836

ABSTRACT

BACKGROUND: APOE Îµ4 allele is most common genetic risk factor for Alzheimer's disease (AD) and cognitive decline. However, it remains poorly understood why only some carriers of APOE Îµ4 develop AD and how ethnic variabilities in APOE locus contribute to AD risk. Here, to address the role of APOE haplotypes, we reassessed the diversity of APOE locus in major ethnic groups and in Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset on patients with AD, and subjects with mild cognitive impairment (MCI), and control non-demented individuals. RESULTS: We performed APOE gene haplotype analysis for a short block of five SNPs across the gene using the ADNI whole genome sequencing dataset. The compilation of ADNI data with 1000 Genomes identified the APOE ε4 linked haplotypes, which appeared to be distant for the Asian, African and European populations. The common European ε4-bearing haplotype is associated with AD but not with MCI, and the Africans lack this haplotype. Haplotypic inference revealed alleles that may confer protection against AD. By assessing the DNA methylation profile of the APOE haplotypes, we found that the AD-associated haplotype features elevated APOE CpG content, implying that this locus can also be regulated by genetic-epigenetic interactions. CONCLUSIONS: We showed that SNP frequency profiles within APOE locus are highly skewed to population-specific haplotypes, suggesting that the ancestral background within different sites at APOE gene may shape the disease phenotype. We propose that our results can be utilized for more specific risk assessment based on population descent of the individuals and on higher specificity of five site haplotypes associated with AD.


Subject(s)
Alzheimer Disease/genetics , Apolipoproteins E/genetics , Haplotypes , Polymorphism, Single Nucleotide , Alzheimer Disease/ethnology , Asian People/ethnology , Asian People/genetics , Black People/ethnology , Black People/genetics , DNA Methylation , Databases, Factual , Genetic Predisposition to Disease , Humans , White People/ethnology , White People/genetics , Whole Genome Sequencing
15.
Ticks Tick Borne Dis ; 9(4): 763-767, 2018 05.
Article in English | MEDLINE | ID: mdl-29496490

ABSTRACT

The progression of infectious diseases depends on causative agents, the environment and the host's genetic susceptibility. To date, human genetic susceptibility to tick-borne encephalitis (TBE) virus-induced disease has not been sufficiently studied. We have combined whole-exome sequencing with a candidate gene approach to identify genes that are involved in the development of predisposition to TBE in a Russian population. Initially, six exomes from TBE patients with severe central nervous system (CNS) disease and seven exomes from control individuals were sequenced. Despite the small sample size, two nonsynonymous single nucleotide polymorphisms (SNPs) were significantly associated with TBE virus-induced severe CNS disease. One of these SNPs is rs6558394 (G/A, Pro422Leu) in the scribbled planar cell polarity protein (SCRIB) gene and the other SNP is rs17576 (A/G, Gln279Arg) in the matrix metalloproteinase 9 (MMP9) gene. Subsequently, these SNPs were genotyped in DNA samples of 150 non-immunized TBE patients with different clinical forms of the disease from two cities and 228 control randomly selected samples from the same populations. There were no statistically significant differences in genotype and allele frequencies between the case and control groups for rs6558394. However, the frequency of the rs17576 G allele was significantly higher in TBE patients with severe CNS diseases such as meningo-encephalitis (43.5%) when compared with TBE patients with milder meningitis (26.3%; P = 0.01), as well as with the population control group (32.5%; P = 0.042). The results suggest that the MMP9 gene may affect genetic predisposition to TBE in a Russian population.


Subject(s)
Central Nervous System Diseases/genetics , Central Nervous System Diseases/virology , Encephalitis, Tick-Borne/genetics , Genetic Predisposition to Disease , Matrix Metalloproteinase 9/genetics , Polymorphism, Single Nucleotide , Alleles , Animals , Central Nervous System Diseases/epidemiology , Central Nervous System Diseases/etiology , Encephalitis Viruses, Tick-Borne/genetics , Encephalitis Viruses, Tick-Borne/isolation & purification , Encephalitis, Tick-Borne/blood , Encephalitis, Tick-Borne/epidemiology , Encephalitis, Tick-Borne/virology , Gene Frequency , Genotype , Humans , Mice , Mice, Knockout , Russia/epidemiology , Whole Genome Sequencing
16.
Cell Transplant ; 26(10): 1663-1668, 2017 10.
Article in English | MEDLINE | ID: mdl-29251110

ABSTRACT

One of the serious obstacles of the aortopathies research is a considerable shortage of human aortic smooth muscle cells (SMCs), which can be used to model the disease. SMC in most cases come from the whole aorta of transplant donors, which are rather difficult to access. In the course of coronary artery bypass graft (CABG) surgery, a fragment of aortic tissue is excised to make a bypass root. In this study, we show a possibility to use CABG leftover fragments of thoracic aorta as a source of human SMC for in vitro research. We isolated SMC from the fragments of aortic tissues obtained during CABG procedure and compared these cells to the cells that were isolated from aortic tissue of transplant donors. The content of key SMC contractile markers (SMA, SM22α, and vimentin) as well as proliferation and migration rates, metalloproteases MMP-2 and MMP-9 activities were similar in CABG-derived SMC and in transplant donor-derived SMC. In conclusion, leftovers of ascending thoracic aorta obtained during CABG can be used as a source of human aortic SMCs for in vitro research.


Subject(s)
Aorta/transplantation , Coronary Artery Bypass/methods , Immunohistochemistry/methods , Myocytes, Smooth Muscle/transplantation , Cell Proliferation , Humans
17.
Front Physiol ; 8: 536, 2017.
Article in English | MEDLINE | ID: mdl-28790933

ABSTRACT

Cellular and molecular mechanisms of thoracic aortic aneurysm are not clear and therapeutic approaches are mostly absent. Thoracic aortic aneurysm is associated with defective differentiation of smooth muscle cells (SMC) of aortic wall. Bicuspid aortic valve (BAV) comparing to tricuspid aortic valve (TAV) significantly predisposes to a risk of thoracic aortic aneurysms. It has been suggested recently that BAV-associated aortopathies represent a separate pathology comparing to TAV-associated dilations. The only proven candidate gene that has been associated with BAV remains NOTCH1. In this study we tested the hypothesis that Notch-dependent and related TGF-ß and BMP differentiation pathways are differently altered in aortic SMC of BAV- vs. TAV-associated aortic aneurysms. SMC were isolated from aortic tissues of the patients with BAV- or TAV-associated aortic aneurysms and from healthy donors used as controls. Gene expression was verified by qPCR and Western blotting. For TGF-ß induced differentiation SMC were treated with the medium containing TGF-ß1. To induce proosteogenic signaling we cultured SMC in the presence of specific osteogenic factors. Notch-dependent differentiation was induced via lentiviral transduction of SMC with activated Notch1 domain. MYOCD expression, a master gene of SMC differentiation, was down regulated in SMC of both BAV and TAV patients. Discriminant analysis of gene expression patterns included a set of contractile genes specific for SMC, Notch-related genes and proosteogenic genes and revealed that control cells form a separate cluster from both BAV and TAV group, while BAV- and TAV-derived SMC are partially distinct with some overlapping. In differentiation experiments TGF-ß caused similar patterns of target gene expression for BAV- and TAV derived cells while the induction was higher in the diseased cells than in control ones. Osteogenic induction caused significant change in RUNX2 expression exclusively in BAV group. Notch activation induced significant ACTA2 expression also exclusively in BAV group. We show that Notch acts synergistically with proosteogenic factors to induce ACTA2 transcription and osteogenic differentiation. In conclusion we have found differences in responsiveness of SMC to Notch and to proosteogenic induction between BAV- and TAV-associated aortic aneurysms.

18.
BMC Genet ; 18(Suppl 1): 111, 2017 12 28.
Article in English | MEDLINE | ID: mdl-29297313

ABSTRACT

BACKGROUND: Many mammals are well adapted to surviving in extremely cold environments. These species have likely accumulated genetic changes that help them efficiently cope with low temperatures. It is not known whether the same genes related to cold adaptation in one species would be under selection in another species. The aims of this study therefore were: to create a compendium of mammalian genes related to adaptations to a low temperature environment; to identify genes related to cold tolerance that have been subjected to independent positive selection in several species; to determine promising candidate genes/pathways/organs for further empirical research on cold adaptation in mammals. RESULTS: After a search for publications containing keywords: "whole genome", "transcriptome or exome sequencing data", and "genome-wide genotyping array data" authors looked for information related to genetic signatures ascribable to positive selection in Arctic or Antarctic mammalian species. Publications related to Human, Arctic fox, Yakut horse, Mammoth, Polar bear, and Minke whale were chosen. The compendium of genes that potentially underwent positive selection in >1 of these six species consisted of 416 genes. Twelve of them showed traces of positive selection in three species. Gene ontology term enrichment analysis of 416 genes from the compendium has revealed 13 terms relevant to the scope of this study. We found that enriched terms were relevant to three major groups: terms associated with collagen proteins and the extracellular matrix; terms associated with the anatomy and physiology of cilium; terms associated with docking. We further revealed that genes from compendium were over-represented in the lists of genes expressed in the lung and liver. CONCLUSIONS: A compendium combining mammalian genes involved in adaptation to cold environment was designed, based on the intersection of positively selected genes from six Arctic and Antarctic species. The compendium contained 416 genes that have been positively selected in at least two species. However, we did not reveal any positively selected genes that would be related to cold adaptation in all species from our list. But, our work points to several strong candidate genes involved in mechanisms and biochemical pathways related to cold adaptation response in different species.


Subject(s)
Acclimatization/genetics , Mammals/genetics , Animals , Antarctic Regions , Arctic Regions , Cold Temperature , Datasets as Topic , Gene Expression , Gene Ontology , Genes , Humans , Selection, Genetic
19.
BMC Evol Biol ; 17(Suppl 2): 259, 2017 12 28.
Article in English | MEDLINE | ID: mdl-29297316

ABSTRACT

BACKGROUND: Tick-borne encephalitis is caused by the neurotropic, positive-sense RNA virus, tick-borne encephalitis virus (TBEV). TBEV infection can lead to a variety of clinical manifestations ranging from slight fever to severe neurological illness. Very little is known about genetic factors predisposing to severe forms of disease caused by TBEV. The aims of the study were to compile a catalog of human genes involved in response to TBEV infection and to rank genes from the catalog based on the number of neighbors in the network of pairwise interactions involving these genes and TBEV RNA or proteins. RESULTS: Based on manual review and curation of scientific publications a catalog comprising 140 human genes involved in response to TBEV infection was developed. To provide access to data on all genes, the TBEVhostDB web resource ( http://icg.nsc.ru/TBEVHostDB/ ) was created. We reconstructed a network formed by pairwise interactions between TBEV virion itself, viral RNA and viral proteins and 140 genes/proteins from TBEVHostDB. Genes were ranked according to the number of interactions in the network. Two genes/proteins (CCR5 and IFNAR1) that had maximal number of interactions were revealed. It was found that the subnetworks formed by CCR5 and IFNAR1 and their neighbors were a fragments of two key pathways functioning during the course of tick-borne encephalitis: (1) the attenuation of interferon-I signaling pathway by the TBEV NS5 protein that targeted peptidase D; (2) proinflammation and tissue damage pathway triggered by chemokine receptor CCR5 interacting with CD4, CCL3, CCL4, CCL2. Among nine genes associated with severe forms of TBEV infection, three genes/proteins (CCR5, IL10, ARID1B) were found to have protein-protein interactions within the network, and two genes/proteins (IFNL3 and the IL10, that was just mentioned) were up- or down-regulated in response to TBEV infection. Based on this finding, potential mechanisms for participation of CCR5, IL10, ARID1B, and IFNL3 in the host response to TBEV infection were suggested. CONCLUSIONS: A database comprising 140 human genes involved in response to TBEV infection was compiled and the TBEVHostDB web resource, providing access to all genes was created. This is the first effort of integrating and unifying data on genetic factors that may predispose to severe forms of diseases caused by TBEV. The TBEVHostDB could potentially be used for assessment of risk factors for severe forms of tick-borne encephalitis and for the design of personalized pharmacological strategies for the treatment of TBEV infection.


Subject(s)
Databases, Genetic , Encephalitis Viruses, Tick-Borne/physiology , Encephalitis, Tick-Borne/genetics , Encephalitis, Tick-Borne/virology , Gene Regulatory Networks , Animals , Humans , Internet , RNA, Viral/genetics
20.
Biochim Biophys Acta ; 1862(4): 733-740, 2016 04.
Article in English | MEDLINE | ID: mdl-26876948

ABSTRACT

Bicuspid aortic valve is the most common congenital heart malformation and the reasons for the aortopathies associated with bicuspid aortic valve remain unclear. NOTCH1 mutations are associated with bicuspid aortic valve and have been found in individuals with various left ventricular outflow tract abnormalities. Notch is a key signaling during cardiac valve formation that promotes the endothelial-to-mesenchymal transition. We address the role of Notch signaling in human aortic endothelial cells from patients with bicuspid aortic valve and aortic aneurysm. Aortic endothelial cells were isolated from tissue fragments of bicuspid aortic valve-associated thoracic aortic aneurysm patients and from healthy donors. Endothelial-to-mesenchymal transition was induced by activation of Notch signaling. Effectiveness of the transition was estimated by loss of endothelial and gain of mesenchymal markers by immunocytochemistry and qPCR. We show that aortic endothelial cells from the patients with aortic aneurysm and bicuspid aortic valve have down regulated Notch signaling and fail to activate Notch-dependent endothelial-to-mesenchymal transition in response to its stimulation by different Notch ligands. Our findings support the idea that bicuspid aortic valve and associated aortic aneurysm is associated with dysregulation of the entire Notch signaling pathway independently on the specific gene mutation.


Subject(s)
Aortic Aneurysm/metabolism , Aortic Valve/abnormalities , Endothelium, Vascular/metabolism , Heart Valve Diseases/metabolism , Receptors, Notch/metabolism , Signal Transduction , Adult , Aortic Aneurysm/pathology , Aortic Valve/metabolism , Aortic Valve/pathology , Bicuspid Aortic Valve Disease , Endothelium, Vascular/pathology , Female , Heart Valve Diseases/pathology , Humans , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...