Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomed Mater Res B Appl Biomater ; 75(1): 128-36, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16015655

ABSTRACT

Recently, a new degradable polymer has been developed on the basis of alkylene bis(dilactoyl)-methacrylate as an alternative material for screw augmentation. The polymer has been investigated in vitro and in a short-term experiment in rabbits exhibiting promising results. The aim of the present study was to investigate its long-term biocompatibility and mechanical functionality in a large animal model. The polymer was used for screw augmentation in the cancellous bone of the femoral condyle and tibia epiphysis of 12 sheep and was compared to polymethylmethacrylate (PMMA) augmented and nonaugmented screws. After an implantation period of 6 months, bone, regional lymph nodes, and several organs were histologically evaluated. The mechanical efficacy was investigated by a biomechanical pullout test. A lot of mononuclear macrophages and multinuclear foreign body giant cells with incorporated polymer particles indicate strong inflammatory reactions. Large osteolysis zones with osteoclasts were found in the surrounding polymer. The polymer was fragmented but not substantially degraded. Polymer particles were also found in the regional lymph nodes. Lung, liver, kidney, and spleen did not show any pathological signs. The pullout force of screws augmented with the new polymer was significantly reduced in comparison to PMMA augmented and nonaugmented screws, respectively. It was concluded that the material has poor biocompatibility and cannot be recommended for clinical application as screw augmentation material.


Subject(s)
Biocompatible Materials/chemistry , Bone Screws , Materials Testing , Methacrylates/chemistry , Polymers/chemistry , Animals , Extremities/surgery , Female , Fractures, Bone/surgery , Models, Animal , Osteolysis , Sheep
2.
J Biomed Mater Res B Appl Biomater ; 70(2): 209-17, 2004 Aug 15.
Article in English | MEDLINE | ID: mdl-15264302

ABSTRACT

The aim of the study was to investigate the biocompatibility, degradation, and biomechanical properties of beta-TCP (Cerasorb) in a weight-bearing sheep model. beta-TCP implant prototypes were implanted in the tibial head of adult merino sheep. After 6 and 12 months material explants were harvested for biomechanical, histological, and histomorphometrical analysis. Corresponding bone specimens of the intact bone of the contralateral leg were used as controls in the biomechanical test. Compression tests showed higher values for maximum fracture load, yield strength, and compression modulus after 6 and 12 months compared to control. Microscopically, the implants showed good osteoconduction and were incorporated into the bone; however, relevant amounts of beta-TCP were still present after 12 months. Histomorphological results revealed that beta-TCP had partially degraded between implantation and 6 months, but its share remained constant between 6 and 12 months. The bone volume fraction in the area of the implant (46% +/- 6.5%) was initially higher than in the corresponding bone area of the contralateral leg (31% +/- 9.6%), but after 12 months declined to 29% +/- 9.4% (control: 33% +/- 8.3%), while the share of beta-TCP remained constant at 36% +/- 12.2%. These findings were supported by microradiographic data. In conclusion, in a weight bearing implantation model beta-TCP showed good biocompatibility, osseointegration and beginning degradation, even though it was not further degraded between 6 and 12 months.


Subject(s)
Biocompatible Materials/chemistry , Calcium Phosphates/chemistry , Implants, Experimental , Osseointegration , Tibia/pathology , Animals , Biomechanical Phenomena , Biomedical Engineering , Female , Models, Animal , Sheep , Weight-Bearing
3.
J Biomed Mater Res ; 63(3): 252-61, 2002.
Article in English | MEDLINE | ID: mdl-12115756

ABSTRACT

Despite the long-standing use of metals as orthopedic implants there still are unsolved problems with these materials and open questions about their behavior in a biological environment. Cell-culture studies provide a useful tool for investigations. In addition to the determination of biochemical or molecular biological parameters, the morphology of adhering cells reflects their interaction with the substrata. This article describes an investigation of the morphology of human osteoblasts on stainless steel, cobalt chromium alloy, commercially pure titanium, Ti-6Al-4V, and Ti-6Al-7Nb with surface designs similar to those used as clinical implants. A cell culture plastic surface was used as a control material. The materials were examined by scanning electron microscopy at different points of time. The cells spread, proliferated, and formed nodules on all test substrates in a time-dependent manner, without signs of a disturbing influence from any of the materials. On the smooth surfaces the cells showed a flattened fibroblast-like morphology and only slight differences could be detected. Therefore, the cellular morphology seems not to be markedly affected by the different chemical material compositions. In contrast, the titanium alloy with a rough, sandblasted surface induced a three-dimensional growth. This three-dimensional cellular network could be the basis for the known earlier differentiation of osteoblasts on rough surfaces in vitro and a better osseointegration in vivo.


Subject(s)
Bone Substitutes , Metals , Microscopy, Electron, Scanning , Osteoblasts/cytology , Cell Adhesion , Cell Division , Cell Size , Cells, Cultured , Humans , Materials Testing
SELECTION OF CITATIONS
SEARCH DETAIL
...