Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Genet Med ; 25(2): 100332, 2023 02.
Article in English | MEDLINE | ID: mdl-36520152

ABSTRACT

PURPOSE: This study aimed to establish the genetic cause of a novel autosomal recessive neurodevelopmental disorder characterized by global developmental delay, movement disorder, and metabolic abnormalities. METHODS: We performed a detailed clinical characterization of 4 unrelated individuals from consanguineous families with a neurodevelopmental disorder. We used exome sequencing or targeted-exome sequencing, cosegregation, in silico protein modeling, and functional analyses of variants in HEK293 cells and Drosophila melanogaster, as well as in proband-derived fibroblast cells. RESULTS: In the 4 individuals, we identified 3 novel homozygous variants in oxoglutarate dehydrogenase (OGDH) (NM_002541.3), which encodes a subunit of the tricarboxylic acid cycle enzyme α-ketoglutarate dehydrogenase. In silico homology modeling predicts that c.566C>T:p.(Pro189Leu) and c.890C>A:p.(Ser297Tyr) variants interfere with the structure and function of OGDH. Fibroblasts from individual 1 showed that the p.(Ser297Tyr) variant led to a higher degradation rate of the OGDH protein. OGDH protein with p.(Pro189Leu) or p.(Ser297Tyr) variants in HEK293 cells showed significantly lower levels than the wild-type protein. Furthermore, we showed that expression of Drosophila Ogdh (dOgdh) carrying variants homologous to p.(Pro189Leu) or p.(Ser297Tyr), failed to rescue developmental lethality caused by loss of dOgdh. SpliceAI, a variant splice predictor, predicted that the c.935G>A:p.(Arg312Lys)/p.(Phe264_Arg312del) variant impacts splicing, which was confirmed through a mini-gene assay in HEK293 cells. CONCLUSION: We established that biallelic variants in OGDH cause a neurodevelopmental disorder with metabolic and movement abnormalities.


Subject(s)
Movement Disorders , Neurodevelopmental Disorders , Animals , Humans , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , HEK293 Cells , Ketoglutarate Dehydrogenase Complex/genetics , Ketoglutarate Dehydrogenase Complex/metabolism , Neurodevelopmental Disorders/genetics
2.
Eur J Paediatr Neurol ; 37: 1-7, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34999443

ABSTRACT

Deleterious variants in the transcription factor early B-cell factor 3 (EBF3) are known to cause a neurodevelopmental disorder (EBF3-NDD). We report eleven individuals with EBF3 variants, including an individual with a duplication/triplication mosaicism of a region encompassing EBF3 and a phenotype consistent with EBF3-NDD, which may reflect the importance of EBF3 gene-dosage for neurodevelopment. The phenotype of individuals in this cohort was quite mild compared to the core phenotype of previously described individuals. Although ataxia tended to wane with age, we show that cognitive difficulties may increase, and we recommend that individuals with EBF3-NDD have systematic neuropsychological follow-up.


Subject(s)
Mosaicism , Neurodevelopmental Disorders , Transcription Factors , Ataxia/genetics , Gene Dosage , Humans , Neurodevelopmental Disorders/genetics , Phenotype , Transcription Factors/genetics
3.
Neurol Genet ; 6(4): e444, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32637629

ABSTRACT

OBJECTIVE: To characterize the genetic background of molecularly undefined childhood-onset ataxias in Finland. METHODS: This study examined a cohort of patients from 50 families with onset of an ataxia syndrome before the age of 5 years collected from a single tertiary center, drawing on the advantages offered by next generation sequencing. A genome-wide genotyping array (Illumina Infinium Global Screening Array MD-24 v.2.0) was used to search for copy number variation undetectable by exome sequencing. RESULTS: Exome sequencing led to a molecular diagnosis for 20 probands (40%). In the 23 patients examined with a genome-wide genotyping array, 2 additional diagnoses were made. A considerable proportion of probands with a molecular diagnosis had de novo pathogenic variants (45%). In addition, the study identified a de novo variant in a gene not previously linked to ataxia: MED23. Patients in the cohort had medically actionable findings. CONCLUSIONS: There is a high heterogeneity of causative mutations in this cohort despite the defined age at onset, phenotypical overlap between patients, the founder effect, and genetic isolation in the Finnish population. The findings reflect the heterogeneous genetic background of ataxia seen worldwide and the substantial contribution of de novo variants underlying childhood ataxia.

4.
Am J Hum Genet ; 101(5): 856-865, 2017 Nov 02.
Article in English | MEDLINE | ID: mdl-29100095

ABSTRACT

Approximately one in every 200 mammalian proteins is anchored to the cell membrane through a glycosylphosphatidylinositol (GPI) anchor. These proteins play important roles notably in neurological development and function. To date, more than 20 genes have been implicated in the biogenesis of GPI-anchored proteins. GPAA1 (glycosylphosphatidylinositol anchor attachment 1) is an essential component of the transamidase complex along with PIGK, PIGS, PIGT, and PIGU (phosphatidylinositol-glycan biosynthesis classes K, S, T, and U, respectively). This complex orchestrates the attachment of the GPI anchor to the C terminus of precursor proteins in the endoplasmic reticulum. Here, we report bi-allelic mutations in GPAA1 in ten individuals from five families. Using whole-exome sequencing, we identified two frameshift mutations (c.981_993del [p.Gln327Hisfs∗102] and c.920delG [p.Gly307Alafs∗11]), one intronic splicing mutation (c.1164+5C>T), and six missense mutations (c.152C>T [p.Ser51Leu], c.160_161delinsAA [p.Ala54Asn], c.527G>C [p.Trp176Ser], c.869T>C [p.Leu290Pro], c.872T>C [p.Leu291Pro], and c.1165G>C [p.Ala389Pro]). Most individuals presented with global developmental delay, hypotonia, early-onset seizures, cerebellar atrophy, and osteopenia. The splicing mutation was found to decrease GPAA1 mRNA. Moreover, flow-cytometry analysis of five available individual samples showed that several GPI-anchored proteins had decreased cell-surface abundance in leukocytes (FLAER, CD16, and CD59) or fibroblasts (CD73 and CD109). Transduction of fibroblasts with a lentivirus encoding the wild-type protein partially rescued the deficiency of GPI-anchored proteins. These findings highlight the role of the transamidase complex in the development and function of the cerebellum and the skeletal system.


Subject(s)
Acyltransferases/genetics , Atrophy/genetics , Bone Diseases, Metabolic/genetics , Developmental Disabilities/genetics , Epilepsy/genetics , Membrane Glycoproteins/genetics , Mutation/genetics , Adolescent , Adult , Alleles , Cerebellum/pathology , Child , Child, Preschool , Exome/genetics , Female , Fibroblasts/pathology , Glycosylphosphatidylinositols/genetics , Humans , Male , Muscle Hypotonia/genetics , Pedigree , RNA, Messenger/genetics , Seizures/genetics
5.
Am J Hum Genet ; 99(3): 735-743, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27545679

ABSTRACT

SQSTM1 (sequestosome 1; also known as p62) encodes a multidomain scaffolding protein involved in various key cellular processes, including the removal of damaged mitochondria by its function as a selective autophagy receptor. Heterozygous variants in SQSTM1 have been associated with Paget disease of the bone and might contribute to neurodegeneration in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Using exome sequencing, we identified three different biallelic loss-of-function variants in SQSTM1 in nine affected individuals from four families with a childhood- or adolescence-onset neurodegenerative disorder characterized by gait abnormalities, ataxia, dysarthria, dystonia, vertical gaze palsy, and cognitive decline. We confirmed absence of the SQSTM1/p62 protein in affected individuals' fibroblasts and found evidence of a defect in the early response to mitochondrial depolarization and autophagosome formation. Our findings expand the SQSTM1-associated phenotypic spectrum and lend further support to the concept of disturbed selective autophagy pathways in neurodegenerative diseases.


Subject(s)
Ataxia/genetics , Autophagy/genetics , Dystonia/genetics , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/physiopathology , Sequestosome-1 Protein/deficiency , Supranuclear Palsy, Progressive/genetics , Adolescent , Adult , Age of Onset , Ataxia/complications , Autophagosomes/metabolism , Autophagosomes/pathology , Child , Cognition Disorders/genetics , Dysarthria/complications , Dysarthria/genetics , Dystonia/complications , Female , Fibroblasts/metabolism , Gait/genetics , Humans , Male , Mitochondria/metabolism , Mitochondria/pathology , Movement Disorders/complications , Movement Disorders/genetics , Neurodegenerative Diseases/complications , Pedigree , Phenotype , RNA, Messenger/analysis , Sequestosome-1 Protein/genetics , Supranuclear Palsy, Progressive/complications , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...