Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Proteins ; 91(12): 1822-1828, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37697630

ABSTRACT

In the ligand prediction category of CASP15, the challenge was to predict the positions and conformations of small molecules binding to proteins that were provided as amino acid sequences or as models generated by the AlphaFold2 program. For most targets, we used our template-based ligand docking program ClusPro ligTBM, also implemented as a public server available at https://ligtbm.cluspro.org/. Since many targets had multiple chains and a number of ligands, several templates, and some manual interventions were required. In a few cases, no templates were found, and we had to use direct docking using the Glide program. Nevertheless, ligTBM was shown to be a very useful tool, and by any ranking criteria, our group was ranked among the top five best-performing teams. In fact, all the best groups used template-based docking methods. Thus, it appears that the AlphaFold2-generated models, despite the high accuracy of the predicted backbone, have local differences from the x-ray structure that make the use of direct docking methods more challenging. The results of CASP15 confirm that this limitation can be frequently overcome by homology-based docking.


Subject(s)
Proteins , Software , Protein Conformation , Molecular Docking Simulation , Ligands , Proteins/chemistry , Protein Binding , Binding Sites
2.
Front Bioinform ; 3: 1207380, 2023.
Article in English | MEDLINE | ID: mdl-37663788

ABSTRACT

Major histocompatibility complex Class I (MHC-I) molecules bind to peptides derived from intracellular antigens and present them on the surface of cells, allowing the immune system (T cells) to detect them. Elucidating the process of this presentation is essential for regulation and potential manipulation of the cellular immune system. Predicting whether a given peptide binds to an MHC molecule is an important step in the above process and has motivated the introduction of many computational approaches to address this problem. NetMHCPan, a pan-specific model for predicting binding of peptides to any MHC molecule, is one of the most widely used methods which focuses on solving this binary classification problem using shallow neural networks. The recent successful results of Deep Learning (DL) methods, especially Natural Language Processing (NLP-based) pretrained models in various applications, including protein structure determination, motivated us to explore their use in this problem. Specifically, we consider the application of deep learning models pretrained on large datasets of protein sequences to predict MHC Class I-peptide binding. Using the standard performance metrics in this area, and the same training and test sets, we show that our models outperform NetMHCpan4.1, currently considered as the-state-of-the-art.

3.
J Am Chem Soc ; 145(13): 7123-7135, 2023 04 05.
Article in English | MEDLINE | ID: mdl-36961978

ABSTRACT

The design of PROteolysis-TArgeting Chimeras (PROTACs) requires bringing an E3 ligase into proximity with a target protein to modulate the concentration of the latter through its ubiquitination and degradation. Here, we present a method for generating high-accuracy structural models of E3 ligase-PROTAC-target protein ternary complexes. The method is dependent on two computational innovations: adding a "silent" convolution term to an efficient protein-protein docking program to eliminate protein poses that do not have acceptable linker conformations and clustering models of multiple PROTACs that use the same E3 ligase and target the same protein. Results show that the largest consensus clusters always have high predictive accuracy and that the ensemble of models can be used to predict the dissociation rate and cooperativity of the ternary complex that relate to the degrading activity of the PROTAC. The method is demonstrated by applications to known PROTAC structures and a blind test involving PROTACs against BRAF mutant V600E. The results confirm that PROTACs function by stabilizing a favorable interaction between the E3 ligase and the target protein but do not necessarily exploit the most energetically favorable geometry for interaction between the proteins.


Subject(s)
Proteins , Ubiquitin-Protein Ligases , Proteolysis , Ubiquitin-Protein Ligases/metabolism , Proteins/metabolism , Ubiquitination
4.
Chem Commun (Camb) ; 58(78): 10933-10936, 2022 Sep 29.
Article in English | MEDLINE | ID: mdl-36065962

ABSTRACT

Light-activable spatiotemporal control of PROTAC-induced protein degradation was achieved with novel arylazopyrazole photoswitchable PROTACs (AP-PROTACs). The use of a promiscuous kinase inhibitor in the design enables this unique photoswitchable PROTAC to selectively degrade four protein kinases together with on/off optical control using different wavelengths of light.


Subject(s)
Light , Ubiquitin-Protein Ligases , Protein Kinases/metabolism , Proteolysis , Ubiquitin-Protein Ligases/metabolism , Pyrazoles/chemistry , Protein Kinase Inhibitors/chemistry
5.
Proteins ; 89(12): 1800-1823, 2021 12.
Article in English | MEDLINE | ID: mdl-34453465

ABSTRACT

We present the results for CAPRI Round 50, the fourth joint CASP-CAPRI protein assembly prediction challenge. The Round comprised a total of twelve targets, including six dimers, three trimers, and three higher-order oligomers. Four of these were easy targets, for which good structural templates were available either for the full assembly, or for the main interfaces (of the higher-order oligomers). Eight were difficult targets for which only distantly related templates were found for the individual subunits. Twenty-five CAPRI groups including eight automatic servers submitted ~1250 models per target. Twenty groups including six servers participated in the CAPRI scoring challenge submitted ~190 models per target. The accuracy of the predicted models was evaluated using the classical CAPRI criteria. The prediction performance was measured by a weighted scoring scheme that takes into account the number of models of acceptable quality or higher submitted by each group as part of their five top-ranking models. Compared to the previous CASP-CAPRI challenge, top performing groups submitted such models for a larger fraction (70-75%) of the targets in this Round, but fewer of these models were of high accuracy. Scorer groups achieved stronger performance with more groups submitting correct models for 70-80% of the targets or achieving high accuracy predictions. Servers performed less well in general, except for the MDOCKPP and LZERD servers, who performed on par with human groups. In addition to these results, major advances in methodology are discussed, providing an informative overview of where the prediction of protein assemblies currently stands.


Subject(s)
Computational Biology/methods , Models, Molecular , Proteins , Software , Binding Sites , Molecular Docking Simulation , Protein Interaction Domains and Motifs , Proteins/chemistry , Proteins/metabolism , Sequence Analysis, Protein
6.
Methods Mol Biol ; 2165: 157-174, 2020.
Article in English | MEDLINE | ID: mdl-32621224

ABSTRACT

The process of creating a model of the structure formed by a pair of interacting molecules is commonly referred to as docking. Protein docking is one of the most studied topics in computational and structural biology with applications to drug design and beyond. In this chapter, we describe ClusPro, a web server for protein-protein and protein-peptide docking. As an input, the server requires two Protein Data Bank (PDB) files (protein-protein mode) or a PDB file for the protein and a sequence for the ligand (protein-peptide mode). Its output consists of ten models of the resulting structure formed by the two objects upon interaction. The server typically produces results in less than 4 h. The server also provides tools (via "Advanced Options" list) for a user to fine-tune the results using any additional knowledge about the interaction process, e.g., small-angle X-ray scattering (SAXS) profile or distance restraints.


Subject(s)
Molecular Docking Simulation/methods , Protein Conformation , Sequence Analysis, Protein/methods , Software , Binding Sites , Peptides/chemistry , Peptides/metabolism , Protein Binding
7.
Proteins ; 88(8): 1082-1090, 2020 08.
Article in English | MEDLINE | ID: mdl-32142178

ABSTRACT

Targets in the protein docking experiment CAPRI (Critical Assessment of Predicted Interactions) generally present new challenges and contribute to new developments in methodology. In rounds 38 to 45 of CAPRI, most targets could be effectively predicted using template-based methods. However, the server ClusPro required structures rather than sequences as input, and hence we had to generate and dock homology models. The available templates also provided distance restraints that were directly used as input to the server. We show here that such an approach has some advantages. Free docking with template-based restraints using ClusPro reproduced some interfaces suggested by weak or ambiguous templates while not reproducing others, resulting in correct server predicted models. More recently we developed the fully automated ClusPro TBM server that performs template-based modeling and thus can use sequences rather than structures of component proteins as input. The performance of the server, freely available for noncommercial use at https://tbm.cluspro.org, is demonstrated by predicting the protein-protein targets of rounds 38 to 45 of CAPRI.


Subject(s)
Molecular Docking Simulation , Peptides/chemistry , Proteins/chemistry , Software , Amino Acid Sequence , Benchmarking , Binding Sites , Humans , Ligands , Peptides/metabolism , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Protein Interaction Mapping , Protein Multimerization , Proteins/metabolism , Research Design , Structural Homology, Protein , Thermodynamics
8.
J Comput Aided Mol Des ; 34(2): 179-189, 2020 02.
Article in English | MEDLINE | ID: mdl-31879831

ABSTRACT

We describe a new template-based method for docking flexible ligands such as macrocycles to proteins. It combines Monte-Carlo energy minimization on the manifold, a fast manifold search method, with BRIKARD for complex flexible ligand searching, and with the MELD accelerator of Replica-Exchange Molecular Dynamics simulations for atomistic degrees of freedom. Here we test the method in the Drug Design Data Resource blind Grand Challenge competition. This method was among the best performers in the competition, giving sub-angstrom prediction quality for the majority of the targets.


Subject(s)
Amyloid Precursor Protein Secretases/metabolism , Aspartic Acid Endopeptidases/metabolism , Drug Design , Macrocyclic Compounds/chemistry , Macrocyclic Compounds/pharmacology , Molecular Docking Simulation , Amyloid Precursor Protein Secretases/chemistry , Aspartic Acid Endopeptidases/chemistry , Binding Sites , Humans , Ligands , Molecular Dynamics Simulation , Monte Carlo Method , Protein Binding , Thermodynamics
9.
J Mol Biol ; 432(11): 3404-3410, 2020 05 15.
Article in English | MEDLINE | ID: mdl-31863748

ABSTRACT

The template-based approach has been essential for achieving high-quality models in the recent rounds of blind protein-protein docking competition CAPRI (Critical Assessment of Predicted Interactions). However, few such automated methods exist for protein-small molecule docking. In this paper, we present an algorithm for template-based docking of small molecules. It searches for known complexes with ligands that have partial coverage of the target ligand, performs conformational sampling and template-guided energy refinement to produce a variety of possible poses, and then scores the refined poses. The algorithm is available as the automated ClusPro LigTBM server. It allows the user to specify the target protein as a PDB file and the ligand as a SMILES string. The server then searches for templates and uses them for docking, presenting the user with top-scoring poses and their confidence scores. The method is tested on the Astex Diverse benchmark, as well as on the targets from the last round of the D3R (Drug Design Data Resource) Grand Challenge. The server is publicly available as part of the ClusPro docking server suite at https://ligtbm.cluspro.org/.


Subject(s)
Computational Biology , Databases, Protein , Proteins/ultrastructure , Small Molecule Libraries/chemistry , Molecular Docking Simulation , Protein Conformation , Proteins/genetics , Software , Structural Homology, Protein
10.
Proteins ; 87(12): 1200-1221, 2019 12.
Article in English | MEDLINE | ID: mdl-31612567

ABSTRACT

We present the results for CAPRI Round 46, the third joint CASP-CAPRI protein assembly prediction challenge. The Round comprised a total of 20 targets including 14 homo-oligomers and 6 heterocomplexes. Eight of the homo-oligomer targets and one heterodimer comprised proteins that could be readily modeled using templates from the Protein Data Bank, often available for the full assembly. The remaining 11 targets comprised 5 homodimers, 3 heterodimers, and two higher-order assemblies. These were more difficult to model, as their prediction mainly involved "ab-initio" docking of subunit models derived from distantly related templates. A total of ~30 CAPRI groups, including 9 automatic servers, submitted on average ~2000 models per target. About 17 groups participated in the CAPRI scoring rounds, offered for most targets, submitting ~170 models per target. The prediction performance, measured by the fraction of models of acceptable quality or higher submitted across all predictors groups, was very good to excellent for the nine easy targets. Poorer performance was achieved by predictors for the 11 difficult targets, with medium and high quality models submitted for only 3 of these targets. A similar performance "gap" was displayed by scorer groups, highlighting yet again the unmet challenge of modeling the conformational changes of the protein components that occur upon binding or that must be accounted for in template-based modeling. Our analysis also indicates that residues in binding interfaces were less well predicted in this set of targets than in previous Rounds, providing useful insights for directions of future improvements.


Subject(s)
Computational Biology , Protein Conformation , Proteins/ultrastructure , Software , Algorithms , Binding Sites/genetics , Databases, Protein , Models, Molecular , Protein Binding/genetics , Protein Interaction Mapping , Proteins/chemistry , Proteins/genetics , Structural Homology, Protein
11.
Proteins ; 87(12): 1241-1248, 2019 12.
Article in English | MEDLINE | ID: mdl-31444975

ABSTRACT

As a participant in the joint CASP13-CAPRI46 assessment, the ClusPro server debuted its new template-based modeling functionality. The addition of this feature, called ClusPro TBM, was motivated by the previous CASP-CAPRI assessments and by the proven ability of template-based methods to produce higher-quality models, provided templates are available. In prior assessments, ClusPro submissions consisted of models that were produced via free docking of pre-generated homology models. This method was successful in terms of the number of acceptable predictions across targets; however, analysis of results showed that purely template-based methods produced a substantially higher number of medium-quality models for targets for which there were good templates available. The addition of template-based modeling has expanded ClusPro's ability to produce higher accuracy predictions, primarily for homomeric but also for some heteromeric targets. Here we review the newest additions to the ClusPro web server and discuss examples of CASP-CAPRI targets that continue to drive further development. We also describe ongoing work not yet implemented in the server. This includes the development of methods to improve template-based models and the use of co-evolutionary information for data-assisted free docking.


Subject(s)
Computational Biology , Protein Conformation , Proteins/ultrastructure , Software , Algorithms , Binding Sites/genetics , Databases, Protein , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Interaction Mapping , Proteins/chemistry , Proteins/genetics , Structural Homology, Protein
12.
J Comput Aided Mol Des ; 33(1): 119-127, 2019 01.
Article in English | MEDLINE | ID: mdl-30421350

ABSTRACT

Manifold representations of rotational/translational motion and conformational space of a ligand were previously shown to be effective for local energy optimization. In this paper we report the development of the Monte-Carlo energy minimization approach (MCM), which uses the same manifold representation. The approach was integrated into the docking pipeline developed for the current round of D3R experiment, and according to D3R assessment produced high accuracy poses for Cathepsin S ligands. Additionally, we have shown that (MD) refinement further improves docking quality. The code of the Monte-Carlo minimization is freely available at https://bitbucket.org/abc-group/mcm-demo .


Subject(s)
Cathepsins/antagonists & inhibitors , Molecular Docking Simulation/methods , Monte Carlo Method , Binding Sites , Computer-Aided Design , Crystallography, X-Ray , Databases, Protein , Drug Design , Ligands , Molecular Conformation , Molecular Dynamics Simulation , Protein Binding , Thermodynamics
13.
J Mol Biol ; 430(15): 2249-2255, 2018 07 20.
Article in English | MEDLINE | ID: mdl-29626538

ABSTRACT

We have recently demonstrated that incorporation of small-angle X-ray scattering (SAXS)-based filtering in our heavily used docking server ClusPro improves docking results. However, the filtering step is time consuming, since ≈105 conformations have to be sequentially processed. At the same time, we have demonstrated the possibility of ultra-fast systematic energy evaluation for all rigid body orientations of two proteins, by sampling using Fast Manifold Fourier Transform (FMFT), if energies are represented as a combination of convolution-like expressions. Here we present a novel FMFT-based algorithm FMFT-SAXS for massive SAXS computation on multiple conformations of a protein complex. This algorithm exploits the convolutional form of SAXS calculation function. FMFT-SAXS allows computation of SAXS profiles for millions of conformations in a matter of minutes, providing an opportunity to explore the whole conformational space of two interacting proteins. We demonstrate the application of the new FMFT-SAXS approach to significantly speed up SAXS filtering step in our current docking protocol (1 to 2 orders of magnitude faster, running in several minutes on a modern 16-core CPU) without loss of accuracy. This is demonstrated on the benchmark set as well as on the experimental data. The new approach is available as a part of ClusPro server (https://beta.cluspro.org) and as an open source C library (https://bitbucket.org/abc-group/libfmftsaxs).


Subject(s)
Algorithms , Computational Biology/methods , Molecular Docking Simulation , Proteins/chemistry , Scattering, Small Angle , Software , Internet , Protein Conformation , Proteins/metabolism , Reproducibility of Results , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...