Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
In Vitro Cell Dev Biol Anim ; 43(5-6): 196-201, 2007.
Article in English | MEDLINE | ID: mdl-17492336

ABSTRACT

A total of 13 insect cell lines spanning 4 orders (Lepidoptera, Coleoptera, Diptera, and Homoptera) were tested for their ability to replicate the nonoccluded virus Hz-1. Only the Lepidopteran cell lines supported replication of the virus with TN-CL1 and BCIRL-HZ-AM1 producing the highest titers of 2.4 x 10(8) tissue culture infective dose (TCID)50/ml and 2.0 x 10(8) TCID50/ml, respectively. A codling moth cell line (CP-169) was the only Lepidopteran cell line that did not replicate the virus and transfection of this cell line with Hz-1 DNA failed to replicate the virus. Also, transfection with DNA from a recombinant baculovirus carrying the red fluorescent protein gene (AcMNPVhsp70 Red) was not expressed in CP-169 cells. The replication cycle of Hz-1 in BCIRL-HZ-AM1 cells showed that this virus replicated rapidly starting at 16 h postinoculation (p.i.) and reaching a peak titer of 1.0 x 10(8) TCID50/ml 56 h postinoculation. Hz-1 when compared with several other baculoviruses has the widest in vitro host spectrum.


Subject(s)
Insect Viruses/physiology , Insecta/cytology , Insecta/virology , Nucleopolyhedroviruses/physiology , Virus Replication , Animals , Cell Line , DNA, Viral/genetics , DNA, Viral/isolation & purification , Insect Viruses/genetics , Insect Viruses/growth & development , Nucleopolyhedroviruses/genetics , Nucleopolyhedroviruses/growth & development , Restriction Mapping , Species Specificity
2.
In Vitro Cell Dev Biol Anim ; 38(3): 173-7, 2002 Mar.
Article in English | MEDLINE | ID: mdl-12026166

ABSTRACT

A cell line from Trichoplusia ni (TN-CL1) infected with the Autographa californica multiple nucleopolyhedrovirus (AcMNPV-HPP) and a cell line from Helicoverpa zea (BCIRL-HZ-AM1) infected with the Helicoverpa zea single nucleopolyhedrovirus (HzSNPV/BrCL2) were subjected to ultraviolet-B (UV-B) irradiation at a predetermined level of exposure that would inactivate greater than 95% of the virus suspended in the liquid. The working hypothesis was that the homologous insect cells would utilize their inherent deoxyribonucleic acid (DNA) repair mechanism(s) to prevent, repair, or at least mitigate the damaging effects of UV-B light on viral DNA synthesis. We attempted to determine this by using infected cells that were subjected to UV-B irradiation at different postinoculation periods under two experimental conditions of exposure: (1) shielded, and (2) nonshielded. Of the two cell lines infected with their respective homologous viruses, the virus from TN-CL1 cells was the least sensitive to UV-B light because the extracellular virus (ECV) and occlusion body (OB) levels of virus-infected TN-CL1 cells were higher than those of the virus-infected BCIRL-HZ-AM1 cells. Production of ECV and OB from both cell lines was lower in the exposed, nonshielded treatment than in the exposed, shielded treatment. However, AcMNPV-HPP was produced in enough quantity to indicate that TN-CL1 might impart a level of protection to the virus against UV light.


Subject(s)
DNA, Viral/radiation effects , Nucleopolyhedroviruses/genetics , Ultraviolet Rays , Animals , Cell Line , DNA Replication , Moths
SELECTION OF CITATIONS
SEARCH DETAIL