Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 59(2): 1145-1152, 2020 Jan 21.
Article in English | MEDLINE | ID: mdl-31880921

ABSTRACT

New cycloplatinated N-heterocyclic carbene (NHC) compounds with chelate diphosphines (P^P) as ancillary ligands: [Pt(R-C^C*)(P^P)]PF6 (R = H, P^P = dppm (1A), dppe (2A), dppbz (3A); R = CN, P^P = dppm (1B), dppe (2B), dppbz (3B)) have been prepared from the corresponding starting material [{Pt(R-C^C*)(µ-Cl)}2] (R = H, A, R = CN, B) and fully characterized. The new compound A has been prepared by a stepwise protocol. The photophysical properties of 1A-3A and 1B-3B have been widely studied and supported by the time-dependent-density functional theory. These compounds show an efficient blue (dppe, dppbz) or cyan (dppm) emission in PMMA films (5 wt %), with photoluminescence quantum yield (PLQY) ranging from 30% to 87% under an argon atmosphere. This emission has been assigned mainly to transitions from 3ILCT [π(NHC) → π*(NHC)] excited states with some 3LL'CT [π(NHC) → π*(P^P)] character. The electroluminescence of these materials in proof-of-concept solution-processed organic light-emitting diodes containing 3A and 3B as dopants was investigated. The CIE coordinates for devices based on 3A (0.22, 0.41) and 3B (0.24, 0.44) fit within the sky blue region.

2.
ACS Appl Mater Interfaces ; 9(24): 20826-20832, 2017 Jun 21.
Article in English | MEDLINE | ID: mdl-28557413

ABSTRACT

In this work, flexible Te films have been synthesized by electrochemical deposition using PEDOT [poly(3,4-ethylenedioxythiophene)] nanofilms as working electrodes. The Te electrodeposition time was varied to find the best thermoelectric properties of the Te/PEDOT double layers. To show the high quality of the Te films grown on PEDOT, the samples were analyzed by Raman spectroscopy, showing the three Raman active modes of Te: E1, A1, and E2. The X-ray diffraction spectra also confirmed the presence of crystalline Te on top of the PEDOT films. The morphology of the Te/PEDOT films was studied using scanning electron microscopy, showing a homogeneous distribution of Te along the film. Also an atomic force microscope was used to analyze the quality of the Te surface. Finally, the electrical conductivity and the Seebeck coefficient of the Te/PEDOT films were measured as a function of the Te deposition time. The films showed an excellent thermoelectric behavior, giving a maximum power factor of about 320 ± 16 µW m-1 K-2 after 2.5 h of Te electrochemical deposition, a value larger than that reported for thin films of Te. Qualitative arguments to explain this behavior are given in the discussion.

SELECTION OF CITATIONS
SEARCH DETAIL
...