Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Bioengineering (Basel) ; 10(7)2023 Jun 22.
Article in English | MEDLINE | ID: mdl-37508776

ABSTRACT

Sterilization is a prerequisite for biomedical devices before contacting the human body. It guarantees the lack of infection by eliminating microorganisms (i.e., bacteria, spores and fungi). It constitutes the last fabrication process of a biomedical device. The aim of this paper is to understand the effect of different sterilization methods (ethanol-EtOH, autoclave-AC, autoclave + ultraviolet radiation-ACUV and gamma irradiation-G) on the surface chemistry and electrochemical reactivity (with special attention on the kinetics of the oxygen reduction reaction) of CoCrMo and titanium biomedical alloys used as prosthetic materials. To do that, electrochemical measurements (open circuit potential, polarization resistance, cathodic potentiodynamic polarization and electrochemical impedance spectroscopy) and surface analyses (Auger Electron Spectroscopy) of the sterilized surfaces were carried out. The obtained results show that the effect of sterilization on the corrosion behavior of biomedical alloys is material-dependent: for CoCrMo alloys, autoclave treatment increases the thickness and the chromium content of the passive film increasing its corrosion resistance compared to simple sterilization in EtOH, while in titanium and its alloys, autoclave and UV-light accelerates its corrosion rate by accelerating the kinetics of oxygen reduction.

2.
Biointerphases ; 16(5): 051001, 2021 09 21.
Article in English | MEDLINE | ID: mdl-34547900

ABSTRACT

Adsorption of calf serum organic matter from a phosphate-buffered solution was studied using the electrochemical quartz crystal microbalance with additional dissipation measurements. Two types of crystal surfaces were used: one rough with micrometer-range surface features and one with roughness in the low nanometer range. The results showed that the adsorption of the organic material was about 1.5 orders of magnitude larger on the rough surface and almost independent of serum concentration in the electrolyte. The adsorption rates were found to increase with increasing serum concentration. For rough crystals, the adsorption kinetics were interpreted with the Johnson-Mehl-Avrami-Kolmogorov model, indicating an initial growth phase according to the tn-law, followed by a slower growth as the nucleation sites fill up. This study suggests that specific surface sites are critical to promote adsorption of proteins on a titanium surface.


Subject(s)
Quartz Crystal Microbalance Techniques , Titanium , Adsorption , Electrolytes , Surface Properties
3.
Materials (Basel) ; 14(4)2021 Feb 20.
Article in English | MEDLINE | ID: mdl-33672713

ABSTRACT

Modular hip joint implants were introduced in arthroplasty medical procedures because they facilitate the tailoring of patients' anatomy, the use of different materials in one single configuration, as well as medical revision. However, in certain cases, such prostheses may undergo deterioration at the head-neck junctions with negative clinical consequences. Crevice-corrosion is commonly invoked as one of the degradation mechanisms acting at those junctions despite biomedical alloys such as Ti6Al4V and CoCr being considered generally resistant to this form of corrosion. To verify the occurrence of crevice corrosion in modular hip joint junctions, laboratory crevice-corrosion tests were conducted in this work under hip joint-relevant conditions, i.e., using similar convergent crevice geometries, materials (Ti6Al4V and CoCr alloys vs. ceramic), surface finish, NaCl solution pHs (5.6 and 2.3), and electrochemical conditions. A theoretical model was also developed to describe crevice-corrosion considering relevant geometrical and electrochemical parameters. To verify the model, a FeCr alloy, known to be sensitive to this phenomenon, was subjected to the crevice-corrosion test in sulfuric acid. The experiments and the model predictions clearly showed that, in principle, crevice corrosion of Ti6Al4V or CoCr is not supposed to occur in typical crevices formed at the stem-neck junction of hip implants.

4.
Materials (Basel) ; 13(21)2020 Oct 29.
Article in English | MEDLINE | ID: mdl-33138286

ABSTRACT

Understanding the interactions between biomedical alloys and body fluids is of importance for the successful and safe performance of implanted devices. Albumin, as the first protein that comes in contact with an implant surface, can determine the biocompatibility of biomedical alloys. The interaction of albumin with biomedical alloys is a complex process influenced by numerous factors. This literature overview aims at presenting the current understanding of the mechanisms of serum albumin (both Bovine Serum Albumin, BSA, and Human Serum Albumin, HSA) interactions with biomedical alloys, considering only those research works that present a mechanistic description of the involved phenomena. Widely used biomedical alloys, such as 316L steel, CoCrMo and Titanium alloys are specifically addressed in this overview. Considering the literature analysis, four albumin-related phenomena can be distinguished: adsorption, reduction, precipitation, and protein-metal binding. The experimental techniques used to understand and quantify those phenomena are described together with the studied parameters influencing them. The crucial effect of the electrochemical potential on those phenomena is highlighted. The effect of the albumin-related phenomena on corrosion behavior of biomedical materials also is discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...