Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Rev Sci Instrum ; 95(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38804809

ABSTRACT

Synchrotron radiation facilities provide highly polarized x-ray beams across a wide energy range. However, the exact type and degree of polarization vary according to the beamline and experimental setup. To accurately determine the angle and degree of linear polarization, a portable x-ray polarimeter has been developed. This setup consists of a silicon drift detector that rotates around a target made of high-density polyethylene. The imprint generated in the angular distribution of scattered photons from the target at a 90-degree angle between the incident x-rays and detector has been exploited to determine the beam polarization. Measurements were conducted at the GALAXIES beamline of the SOLEIL synchrotron. The expected angular distribution of the scattered photons for a given beam polarization was obtained through simulations using the Geant4 simulation toolkit. An excellent agreement between simulations and the collected data has been obtained, validating the setup and enabling a precise determination of the beam polarization.

2.
J Synchrotron Radiat ; 30(Pt 1): 242-250, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36601943

ABSTRACT

The PERCIVAL detector is a CMOS imager designed for the soft X-ray regime at photon sources. Although still in its final development phase, it has recently seen its first user experiments: ptychography at a free-electron laser, holographic imaging at a storage ring and preliminary tests on X-ray photon correlation spectroscopy. The detector performed remarkably well in terms of spatial resolution achievable in the sample plane, owing to its small pixel size, large active area and very large dynamic range; but also in terms of its frame rate, which is significantly faster than traditional CCDs. In particular, it is the combination of these features which makes PERCIVAL an attractive option for soft X-ray science.


Subject(s)
Photons , Radiography , X-Rays
3.
Eur Phys J C Part Fields ; 76(10): 529, 2016.
Article in English | MEDLINE | ID: mdl-28316484

ABSTRACT

If Dark Matter is made of Weakly Interacting Massive Particles (WIMPs) with masses below [Formula: see text] GeV, the corresponding nuclear recoils in mainstream WIMP experiments are of energies too close, or below, the experimental threshold. Gas Time Projection Chambers (TPCs) can be operated with a variety of target elements, offer good tracking capabilities and, on account of the amplification in gas, very low thresholds are achievable. Recent advances in electronics and in novel radiopure TPC readouts, especially micro-mesh gas structure (Micromegas), are improving the scalability and low-background prospects of gaseous TPCs. Here we present TREX-DM, a prototype to test the concept of a Micromegas-based TPC to search for low-mass WIMPs. The detector is designed to host an active mass of [Formula: see text] kg of Ar at 10 bar, or alternatively [Formula: see text] kg of Ne at 10 bar, with an energy threshold below 0.4 keVee, and is fully built with radiopure materials. We will describe the detector in detail, the results from the commissioning phase on surface, as well as a preliminary background model. The anticipated sensitivity of this technique may go beyond current experimental limits for WIMPs of masses of 2-8 GeV.

4.
Phys Rev Lett ; 112(9): 091302, 2014 Mar 07.
Article in English | MEDLINE | ID: mdl-24655238

ABSTRACT

The CERN Axion Solar Telescope has finished its search for solar axions with (3)He buffer gas, covering the search range 0.64 eV ≲ ma ≲ 1.17 eV. This closes the gap to the cosmological hot dark matter limit and actually overlaps with it. From the absence of excess x rays when the magnet was pointing to the Sun we set a typical upper limit on the axion-photon coupling of gaγ ≲ 3.3 × 10(-10) GeV(-1) at 95% C.L., with the exact value depending on the pressure setting. Future direct solar axion searches will focus on increasing the sensitivity to smaller values of gaγ, for example by the currently discussed next generation helioscope International AXion Observatory.

5.
Phys Rev Lett ; 107(26): 261302, 2011 Dec 23.
Article in English | MEDLINE | ID: mdl-22243149

ABSTRACT

The CERN Axion Solar Telescope (CAST) has extended its search for solar axions by using (3)He as a buffer gas. At T=1.8 K this allows for larger pressure settings and hence sensitivity to higher axion masses than our previous measurements with (4)He. With about 1 h of data taking at each of 252 different pressure settings we have scanned the axion mass range 0.39 eV≲m(a)≲0.64 eV. From the absence of excess x rays when the magnet was pointing to the Sun we set a typical upper limit on the axion-photon coupling of g(aγ)≲2.3×10(-10) GeV(-1) at 95% C.L., the exact value depending on the pressure setting. Kim-Shifman-Vainshtein-Zakharov axions are excluded at the upper end of our mass range, the first time ever for any solar axion search. In the future we will extend our search to m(a)≲1.15 eV, comfortably overlapping with cosmological hot dark matter bounds.

SELECTION OF CITATIONS
SEARCH DETAIL
...