Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 5(31): 19453-19463, 2020 Aug 11.
Article in English | MEDLINE | ID: mdl-32803039

ABSTRACT

To contribute a solution for the global warming problem, the selective electrochemical reduction of CO2 to CO was studied in the gas phase using a [CO2(g), Co-N-C cathode | Nafion-H | Pt/C anode, H2/water] system without using carbonate solutions. The Co-N-C electrocatalysts were synthesized by partial pyrolysis of precursors in inert gas, which were prepared from various N-bidentate ligands, Co(NO3)2, and Ketjenblack (KB). The most active electrocatalyst was Co-(4,4'-dimethyl-2,2'-bipyridine)/KB pyrolyzed at 673 K, denoted Co-4,4'-dmbpy/KB(673K). A high performance of CO formation (331 µmol h-1 cm-2, 217 TOF h-1) at 0.020 A cm-2 with 78% current efficiency was obtained at -0.75 V (SHE) and 273 K under strong acidic conditions of Nafion-H. Characterization studies using extended X-ray absorption fine structure (EXAFS), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy-energy-dispersive X-ray (TEM-EDX), X-ray diffraction (XRD), and temperature-programmed desorption with mass spectrometry (TPD-MS) indicated the active site as Co coordinated with four N atoms bonding the surface of KB, abbreviated Co-N4-C x structure. A model of the reduction mechanism of CO2 on the active site was proposed.

2.
ACS Omega ; 5(2): 1221-1228, 2020 Jan 21.
Article in English | MEDLINE | ID: mdl-31984280

ABSTRACT

Electrohydrogenation of toluene (TL) to methylcyclohexane (MCH) has been recognized as a promising technology for the hydrogenation process in the organic hydride hydrogen storage system. Recently, we found that the Ketjenblack (KB)-supported Ru-Ir alloy electrocatalyst showed a high electrocatalytic activity for the electrohydrogenation of TL to MCH, and there was the synergy of Ir electrocatalysis for the formation of adsorbed hydrogen species (Had) (H+ + e- → Had) and Ru catalysis for hydrogenation of TL (6Had + TL → MCH). In this paper, the Ir-modified Ru nanoparticle supported on KB (Ir/Ru/KB) electrocatalyst was synthesized by using a modified spontaneous deposition method. The method enables to control the surface structure of Ru-Ir nanoparticles. The Ir/Ru/KB cathode showed higher electrohydrogenation activity than the Ru-Ir alloy/KB cathodes even at lower loadings of precious Ir. Characterization studies using a scanning-transmission electron microscope with an energy-dispersive X-ray spectrometer and X-ray absorption fine structure proved selective and uniform modification of Ru nanoparticle with Ir. Cyclic voltammetry measurements in H2SO4 aqueous solution indicated higher electrochemical active surface areas of Ir at the Ir/Ru/KB electrocatalysts than that at the Ru-Ir alloy/KB electrocatalysts, which is the reason for the strong synergy of Ru and Ir for the electrohydrogenation of TL to MCH.

3.
Angew Chem Int Ed Engl ; 57(35): 11238-11241, 2018 Aug 27.
Article in English | MEDLINE | ID: mdl-30059182

ABSTRACT

The photo-electrochemical C-H bond activation of cyclohexane to produce cyclohexanol and cyclohexanone (KA oil) with high partial oxidation selectivity (99 %) and high current utilization ratio (76 %) was achieved in air at room temperature at atmospheric pressure. The production rate of KA oil was accelerated by applying a bias. The incident photon to current efficiencies at 365 and 420 nm were 57 % and 24 %, respectively.

4.
Phys Chem Chem Phys ; 18(20): 13811-9, 2016 05 18.
Article in English | MEDLINE | ID: mdl-27145887

ABSTRACT

Layered double hydroxide (LDH) photocatalysts, including Ni-Al LDH, are active for the photocatalytic conversion of CO2 in water under UV light irradiation. In this study, we found that a series of LDHs exhibited anodic photocurrent which is a characteristic feature corresponding to n-type materials. Also, we estimated the potentials of photogenerated electrons and holes for LDHs, which are responsible for the photocatalytic reactions, using electrochemical techniques. The flat band potential of the Ni-Al LDH photocatalyst was estimated to be -0.40 V vs. NHE (pH = 0), indicating that the potential of the photogenerated electron is sufficient to reduce CO2 to CO. Moreover, we revealed that the flat band potentials of M(2+)-M(3+) LDH are clearly influenced by the type of trivalent metal (M(3+)) components.

5.
Phys Chem Chem Phys ; 17(27): 17995-8003, 2015 Jul 21.
Article in English | MEDLINE | ID: mdl-26096980

ABSTRACT

The photocatalytic conversion of CO2 into useful chemical compounds in water without using organic sacrificial reagents is a promising method to overcome environmental and energy problems. Various synthesized layered double hydroxides (LDHs) are capable of reducing CO2 to CO in an aqueous solution under UV light irradiation. However, it is difficult to oxidize H2O to O2 in a photocatalytic system using LDHs as photocatalysts. In this study, we investigated the photocatalytic conversion of CO2 using a Ni-Al LDH in an aqueous solution of NaCl. Hypochlorous acid (HClO) was produced as an oxidation product of Cl(-) with the formation of reduction products such as CO and H2 under photoirradiation. We propose the inclusion of Cl(-) in the reaction solution to be one of the most promising ways for obtaining a hole scavenger, an approach that would enable the construction of an artificial photosynthesis system for the conversion of CO2.

SELECTION OF CITATIONS
SEARCH DETAIL
...