Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Semin Cell Dev Biol ; 134: 27-36, 2023 01 30.
Article in English | MEDLINE | ID: mdl-35341677

ABSTRACT

Ostreobium is a siphonous green alga in the Bryopsidales (Chlorophyta) that burrows into calcium carbonate (CaCO3) substrates. In this habitat, it lives under environmental conditions unusual for an alga (i.e., low light and low oxygen) and it is a major agent of carbonate reef bioerosion. In coral skeletons, Ostreobium can form conspicuous green bands recognizable by the naked eye and it is thought to contribute to the coral's nutritional needs. With coral reefs in global decline, there is a renewed focus on understanding Ostreobium biology and its roles in the coral holobiont. This review summarizes knowledge on Ostreobium's morphological structure, biodiversity and evolution, photosynthesis, mechanism of bioerosion and its role as a member of the coral holobiont. We discuss the resources available to study Ostreobium biology, lay out some of the uncharted territories in Ostreobium biology and offer perspectives for future research.


Subject(s)
Anthozoa , Chlorophyta , Animals , Coral Reefs , Ecosystem
2.
J Phycol ; 58(3): 406-423, 2022 06.
Article in English | MEDLINE | ID: mdl-35090189

ABSTRACT

Gracilariales is a clade of florideophycean red macroalgae known for being the main source of agar. We present a de novo genome assembly and annotation of Gracilaria domingensis, an agarophyte alga with flattened thallus widely distributed along Central and South American Atlantic intertidal zones. In addition to structural analysis, an organizational comparison was done with other Rhodophyta genomes. The nuclear genome has 78 Mbp, with 11,437 predicted coding genes, 4,075 of which did not have hits in sequence databases. We also predicted 1,567 noncoding RNAs, distributed in 14 classes. The plastid and mitochondrion genome structures were also obtained. Genes related to agar synthesis were identified. Genes for type II galactose sulfurylases could not be found. Genes related to ascorbate synthesis were found. These results suggest an intricate connection of cell wall polysaccharide synthesis and the redox systems through the use of L-galactose in Rhodophyta. The genome of G. domingensis should be valuable to phycological and aquacultural research, as it is the first tropical and Western Atlantic red macroalgal genome to be sequenced.


Subject(s)
Genome, Mitochondrial , Gracilaria , Rhodophyta , Agar/metabolism , Galactose/metabolism , Gracilaria/genetics , Rhodophyta/genetics , Rhodophyta/metabolism
3.
New Phytol ; 233(5): 2144-2154, 2022 03.
Article in English | MEDLINE | ID: mdl-34923642

ABSTRACT

The genomic diversity underpinning high ecological and species diversity in the green algae (Chlorophyta) remains little known. Here, we aimed to track genome evolution in the Chlorophyta, focusing on loss and gain of homologous genes, and lineage-specific innovations of the core Chlorophyta. We generated a high-quality nuclear genome for pedinophyte YPF701, a sister lineage to others in the core Chlorophyta and incorporated this genome in a comparative analysis with 25 other genomes from diverse Viridiplantae taxa. The nuclear genome of pedinophyte YPF701 has an intermediate size and gene number between those of most prasinophytes and the remainder of the core Chlorophyta. Our results suggest positive selection for genome streamlining in the Pedinophyceae, independent from genome minimisation observed among prasinophyte lineages. Genome expansion was predicted along the branch leading to the UTC clade (classes Ulvophyceae, Trebouxiophyceae and Chlorophyceae) after divergence from their last common ancestor with pedinophytes, with genomic novelty implicated in a range of basic biological functions. Results emphasise multiple independent signals of genome minimisation within the Chlorophyta, as well as the genomic novelty arising before diversification in the UTC clade, which may underpin the success of this species-rich clade in a diversity of habitats.


Subject(s)
Chlorophyta , Cell Nucleus/genetics , Chlorophyta/genetics , Evolution, Molecular , Genome , Genomics , Phylogeny
4.
Mol Biol Evol ; 39(1)2022 01 07.
Article in English | MEDLINE | ID: mdl-34613411

ABSTRACT

Endosymbiosis, the establishment of a former free-living prokaryotic or eukaryotic cell as an organelle inside a host cell, can dramatically alter the genomic architecture of the endosymbiont. Plastids or chloroplasts, the light-harvesting organelle of photosynthetic eukaryotes, are excellent models to study this phenomenon because plastid origin has occurred multiple times in evolution. Here, we investigate the genomic signature of molecular processes acting through secondary plastid endosymbiosis-the origination of a new plastid from a free-living eukaryotic alga. We used phylogenetic comparative methods to study gene loss and changes in selective regimes on plastid genomes, focusing on green algae that have given rise to three independent lineages with secondary plastids (euglenophytes, chlorarachniophytes, and Lepidodinium). Our results show an overall increase in gene loss associated with secondary endosymbiosis, but this loss is tightly constrained by the retention of genes essential for plastid function. The data show that secondary plastids have experienced temporary relaxation of purifying selection during secondary endosymbiosis. However, this process is tightly constrained, with selection relaxed only relative to the background in primary plastids. Purifying selection remains strong in absolute terms even during the endosymbiosis events. Selection intensity rebounds to pre-endosymbiosis levels following endosymbiosis events, demonstrating the changes in selection efficiency during different origin phases of secondary plastids. Independent endosymbiosis events in the euglenophytes, chlorarachniophytes, and Lepidodinium differ in their degree of relaxation of selection, highlighting the different evolutionary contexts of these events. This study reveals the selection-drift interplay during secondary endosymbiosis and evolutionary parallels during organellogenesis.


Subject(s)
Dinoflagellida , Genome, Plastid , Dinoflagellida/genetics , Genome , Phylogeny , Plastids/genetics , Symbiosis/genetics
5.
Mol Phylogenet Evol ; 165: 107294, 2021 12.
Article in English | MEDLINE | ID: mdl-34419587

ABSTRACT

The Gracilariales is a highly diverse, widely distributed order of red algae (Rhodophyta) that forms a well-supported clade. Aside from their ecological importance, species of Gracilariales provide important sources of agarans and possess bioactive compounds with medicinal and pharmaceutical use. Recent phylogenetic analyses from a small number of genes have greatly advanced our knowledge of evolutionary relationships in this clade, yet several key nodes were not especially well resolved. We assembled a phylogenomic data set containing 79 nuclear genes, 195 plastid genes, and 24 mitochondrial genes from species representing all three major Gracilariales lineages, including: Melanthalia, Gracilariopsis, and Gracilaria sensu lato. This data set leads to a fully-resolved phylogeny of Gracilariales, which is highly-consistent across genomic compartments. In agreement with previous findings, Melanthalia obtusata was sister to a clade including Gracilaria s.l. and Gracilariopsis, which were each resolved as well-supported clades. Our results also clarified the long-standing uncertainty about relationships in Gracilaria s.l., not resolved in single and multi-genes approaches. We further characterized the divergence time, organellar genome architecture, and morphological trait evolution in Gracilarales to better facilitate its taxonomic treatment. Gracilariopsis and Gracilaria s.l. are comparable taxonomic ranks, based on the overlapping time range of their divergence. The genomic structure of plastid and mitochondria is highly conserved within each clade but differs slightly among these clades in gene contents. For example, the plastid gene petP is lost in Gracilaria s.l. and the mitochondrial gene trnH is in different positions in the genome of Gracilariopsis and Gracilaria s.l. Our analyses of ancestral character evolution provide evidence that the main characters used to delimitate genera in Gracilariales, such as spermatangia type and features of the cystocarp's anatomy, overlap in subclades of Gracilaria s.l. We discuss the taxonomy of Gracilariales in light of these results and propose an objective and practical classification, which is in agreement with the criteria of monophyly, exclusive characters, predictability and nomenclatural stability.


Subject(s)
Gracilaria , Rhodophyta , Genes, Mitochondrial , Gracilaria/genetics , Phylogeny , Plastids/genetics , Rhodophyta/genetics
6.
Curr Biol ; 31(7): 1393-1402.e5, 2021 04 12.
Article in English | MEDLINE | ID: mdl-33548192

ABSTRACT

The green alga Ostreobium is an important coral holobiont member, playing key roles in skeletal decalcification and providing photosynthate to bleached corals that have lost their dinoflagellate endosymbionts. Ostreobium lives in the coral's skeleton, a low-light environment with variable pH and O2 availability. We present the Ostreobium nuclear genome and a metatranscriptomic analysis of healthy and bleached corals to improve our understanding of Ostreobium's adaptations to its extreme environment and its roles as a coral holobiont member. The Ostreobium genome has 10,663 predicted protein-coding genes and shows adaptations for life in low and variable light conditions and other stressors in the endolithic environment. This alga presents a rich repertoire of light-harvesting complex proteins but lacks many genes for photoprotection and photoreceptors. It also has a large arsenal of genes for oxidative stress response. An expansion of extracellular peptidases suggests that Ostreobium may supplement its energy needs by feeding on the organic skeletal matrix, and a diverse set of fermentation pathways allows it to live in the anoxic skeleton at night. Ostreobium depends on other holobiont members for vitamin B12, and our metatranscriptomes identify potential bacterial sources. Metatranscriptomes showed Ostreobium becoming a dominant agent of photosynthesis in bleached corals and provided evidence for variable responses among coral samples and different Ostreobium genotypes. Our work provides a comprehensive understanding of the adaptations of Ostreobium to its extreme environment and an important genomic resource to improve our comprehension of coral holobiont resilience, bleaching, and recovery.


Subject(s)
Adaptation, Biological/genetics , Anthozoa , Chlorophyta/genetics , Genomics , Symbiosis , Animals
7.
J Phycol ; 54(6): 775-787, 2018 12.
Article in English | MEDLINE | ID: mdl-29989670

ABSTRACT

Gracilariaceae has a worldwide distribution including numerous economically important species. We applied high-throughput sequencing to obtain organellar genomes (mitochondria and chloroplast) from 10 species of Gracilariaceae and, combined with published genomes, to infer phylogenies and compare genome architecture among species representing main lineages. We obtained similar topologies between chloroplast and mitochondrial genomes phylogenies. However, the chloroplast phylogeny was better resolved with full support. In this phylogeny, Melanthalia intermedia is sister to a monophyletic clade including Gracilaria and Gracilariopsis, which were both resolved as monophyletic genera. Mitochondrial and chloroplast genomes were highly conserved in gene synteny, and variation mainly occurred in regions where insertions of plasmid-derived sequences (PDS) were found. In mitochondrial genomes, PDS insertions were observed in two regions where the transcription direction changes: between the genes cob and trnL, and trnA and trnN. In chloroplast genomes, PDS insertions were in different positions, but generally found between psdD and rrs genes. Gracilariaceae is a good model system to study the impact of PDS in genome evolution due to the frequent presence of these insertions in organellar genomes. Furthermore, the bacterial leuC/leuD operon was found in chloroplast genomes of Gracilaria tenuistipitata, G. chilensis, and M. intermedia, and in extrachromosomal plasmid of G. vermiculophylla. Phylogenetic trees show two different origins of leuC/leuD: genes found in chloroplast and plasmid were placed with proteobacteria, and genes encoded in the nucleus were close to Viridiplantae and cyanobacteria.


Subject(s)
Evolution, Molecular , Genome, Chloroplast/genetics , Genome, Mitochondrial/genetics , Rhodophyta/genetics , Phylogeny , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...