Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Bacteriol ; 206(2): e0035123, 2024 02 22.
Article in English | MEDLINE | ID: mdl-38289045

ABSTRACT

The DPANN archaeal clade includes obligately ectosymbiotic species. Their cell surfaces potentially play an important role in the symbiotic interaction between the ectosymbionts and their hosts. However, little is known about the mechanism of ectosymbiosis. Here, we show cell surface structures of the cultivated DPANN archaeon Nanobdella aerobiophila strain MJ1T and its host Metallosphaera sedula strain MJ1HA, using a variety of electron microscopy techniques, i.e., negative-staining transmission electron microscopy, quick-freeze deep-etch TEM, and 3D electron tomography. The thickness, unit size, and lattice symmetry of the S-layer of strain MJ1T were different from those of the host archaeon strain MJ1HA. Genomic and transcriptomic analyses highlighted the most highly expressed MJ1T gene for a putative S-layer protein with multiple glycosylation sites and immunoglobulin-like folds, which has no sequence homology to known S-layer proteins. In addition, genes for putative pectin lyase- or lectin-like extracellular proteins, which are potentially involved in symbiotic interaction, were found in the MJ1T genome based on in silico 3D protein structure prediction. Live cell imaging at the optimum growth temperature of 65°C indicated that cell complexes of strains MJ1T and MJ1HA were motile, but sole MJ1T cells were not. Taken together, we propose a model of the symbiotic interaction and cell cycle of Nanobdella aerobiophila.IMPORTANCEDPANN archaea are widely distributed in a variety of natural and artificial environments and may play a considerable role in the microbial ecosystem. All of the cultivated DPANN archaea so far need host organisms for their growth, i.e., obligately ectosymbiotic. However, the mechanism of the ectosymbiosis by DPANN archaea is largely unknown. To this end, we performed a comprehensive analysis of the cultivated DPANN archaeon, Nanobdella aerobiophila, using electron microscopy, live cell imaging, transcriptomics, and genomics, including 3D protein structure prediction. Based on the results, we propose a reasonable model of the symbiotic interaction and cell cycle of Nanobdella aerobiophila, which will enhance our understanding of the enigmatic physiology and ecological significance of DPANN archaea.


Subject(s)
Archaea , Archaea/genetics , Genome, Archaeal , Genomics , Phylogeny
2.
Drug Metab Pharmacokinet ; 46: 100460, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35820204

ABSTRACT

Gender is a crucial factor determining susceptibility to drug-induced liver injury (DILI) in humans and experimental animals. However, no general concept of sex differences in DILI has been established, as metabolic events specific to one DILI model are difficult to apply to other DILI models. Herein, we examined sex differences in carbon tetrachloride (CCl4)-induced hepatotoxicity, a widely employed DILI model. Male and female CD-1 mice were intraperitoneally administered CCl4. Additionally, some male mice were administered genistein or another isoflavone to evaluate the effects of exogenous estrogens. Dose-dependent alanine aminotransferase leakage was observed at a CCl4 range of 0.5-10 mmol/kg, with male-dominant sex differences mainly observed at lower doses. No sex differences in hepatic glutathione levels or thiobarbituric acid-reactive substance formation were detected. CCl4 induced hepatic inflammatory genes, interleukin (IL)-6 and tumor necrosis factor (TNF)-α, predominantly in female mice, which might be involved in DILI resistance, observed in female mice. Treatment of male mice with phytoestrogens, especially genistein, attenuated CCl4-induced hepatotoxicity. Moreover, genistein inhibited IL-6 and TNF-α expression, suggesting possible hepatoprotection via immunosuppression. In conclusion, female mice are resistant to CCl4-induced hepatotoxicity, and male mice were afforded protection by genistein, probably via mechanisms based on anti-estrogenic, antioxidant and/or anti-inflammatory effects.


Subject(s)
Anti-Inflammatory Agents , Antioxidants , Chemical and Drug Induced Liver Injury , Estrogens , Isoflavones , Animals , Female , Male , Mice , Alanine Transaminase/metabolism , Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Antioxidants/physiology , Carbon Tetrachloride/toxicity , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/prevention & control , Estrogens/pharmacology , Estrogens/physiology , Genistein/pharmacology , Glutathione/metabolism , Interleukin-6 , Phytoestrogens , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...