Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
Add more filters










Publication year range
1.
J Org Chem ; 89(6): 4128-4133, 2024 03 15.
Article in English | MEDLINE | ID: mdl-38407917

ABSTRACT

Histrionicotoxin (HTX) alkaloids, which are isolated from Colombian poison dart frogs, are analgesic neurotoxins that modulate nicotinic acetylcholine receptors (nAChRs) as antagonists. Perhydrohistrionicotoxin (pHTX) is the potent synthetic analogue of HTX and possesses a 1-azaspiro[5.5]undecane skeleton common to the HTX family. Here, we show for the first time the divergent nine-step synthesis of pHTX and its three stereoisomers from the known aldehyde through a one-step construction of the 1-azaspiro[5.5]undecane framework from a linear amino ynone substrate. Surprisingly, some pHTX diastereomers exhibited antagonistic activities on the chicken α4ß2-neuronal nAChRs that were more potent than pHTX.


Subject(s)
Amphibian Venoms , Chickens , Receptors, Nicotinic , Animals , Alkanes
2.
J Med Chem ; 66(12): 7959-7968, 2023 06 22.
Article in English | MEDLINE | ID: mdl-37309671

ABSTRACT

Pyrethrins from Tanacetum cinerariifolium are natural pesticides that exhibit high knockdown and killing activities against flying insects such as disease-spreading mosquitoes. Despite the increasing demand for pyrethrins, the mechanism of pyrethrin biosynthesis remains elusive. To elucidate it, we for the first time created pyrethrin mimetic phosphonates targeting the GDSL esterase/lipase (GELP or TcGLIP) underpinning pyrethrin biosynthesis. The compounds were synthesized by reacting mono-alkyl or mono-benzyl-substituted phosphonic dichloride with pyrethrolone, the alcohol moiety of pyrethrin I and II, and then p-nitrophenol. n-Pentyl (C5) and n-octyl (C8)-substituted compounds were the most potent of the (S)p,(S)c, and (R)p,(S)c diastereomers, respectively. The (S)-pyrethrolonyl group is more effective than the (R)-pyrethrolonyl group in blocking TcGLIP, consistent with the features predicted by TcGLIP models complexed with the (S)p,(S)c-C5 and (R)p,(S)c-C8 probes. The (S)p,(S)c-C5 compound suppressed pyrethrin production in T. cinerariifolium, demonstrating potential as a chemical tool for unravelling pyrethrin biosynthesis.


Subject(s)
Chrysanthemum cinerariifolium , Insecticides , Pyrethrins , Esterases , Lipase , Insecticides/chemistry , Pyrethrins/pharmacology , Pyrethrins/chemistry , Chrysanthemum cinerariifolium/chemistry
3.
Mol Pharmacol ; 103(6): 299-310, 2023 06.
Article in English | MEDLINE | ID: mdl-36948535

ABSTRACT

The anthelmintic paraherquamide A acts selectively on the nematode L-type nicotinic acetylcholine receptors (nAChRs), but the mechanism of its selectivity is unknown. This study targeted the basis of paraherquamide A selectivity by determining an X-ray crystal structure of the acetylcholine binding protein (AChBP), a surrogate nAChR ligand-binding domain, complexed with the compound and by measuring its actions on wild-type and mutant Caenorhabditis elegans nematodes and functionally expressed C. elegans nAChRs. Paraherquamide A showed a higher efficacy for the levamisole-sensitive [L-type (UNC-38/UNC-29/UNC-63/LEV-1/LEV-8)] nAChR than the nicotine-sensitive [N-type (ACR-16)] nAChR, a result consistent with in vivo studies on wild-type worms and worms with mutations in subunits of these two classes of receptors. The X-ray crystal structure of the Ls-AChBP-paraherquamide A complex and site-directed amino acid mutation studies showed for the first time that loop C, loop E, and loop F of the orthosteric receptor binding site play critical roles in the observed L-type nAChR selective actions of paraherquamide A. SIGNIFICANCE STATEMENT: Paraherquamide A, an oxindole alkaloid, has been shown to act selectively on the L-type over N-type nAChRs in nematodes, but the mechanism of selectivity is unknown. We have co-crystallized paraherquamide A with the acetylcholine binding protein, a surrogate of nAChRs, and found that structural features of loop C, loop E, and loop F contribute to the L-type nAChR selectivity of the alkaloid. The results create a new platform for the design of anthelmintic drugs targeting cholinergic neurotransmission in parasitic nematodes.


Subject(s)
Anthelmintics , Nematoda , Receptors, Nicotinic , Animals , Receptors, Nicotinic/genetics , Receptors, Nicotinic/metabolism , Caenorhabditis elegans/metabolism , Acetylcholine/metabolism , Anthelmintics/pharmacology , Anthelmintics/metabolism , Levamisole/pharmacology , Nematoda/metabolism
4.
PLoS Genet ; 19(2): e1010522, 2023 02.
Article in English | MEDLINE | ID: mdl-36795653

ABSTRACT

Neonicotinoid insecticides target insect nicotinic acetylcholine receptors (nAChRs) and their adverse effects on non-target insects are of serious concern. We recently found that cofactor TMX3 enables robust functional expression of insect nAChRs in Xenopus laevis oocytes and showed that neonicotinoids (imidacloprid, thiacloprid, and clothianidin) exhibited agonist actions on some nAChRs of the fruit fly (Drosophila melanogaster), honeybee (Apis mellifera) and bumblebee (Bombus terrestris) with more potent actions on the pollinator nAChRs. However, other subunits from the nAChR family remain to be explored. We show that the Dα3 subunit co-exists with Dα1, Dα2, Dß1, and Dß2 subunits in the same neurons of adult D. melanogaster, thereby expanding the possible nAChR subtypes in these cells alone from 4 to 12. The presence of Dα1 and Dα2 subunits reduced the affinity of imidacloprid, thiacloprid, and clothianidin for nAChRs expressed in Xenopus laevis oocytes, whereas the Dα3 subunit enhanced it. RNAi targeting Dα1, Dα2 or Dα3 in adults reduced expression of targeted subunits but commonly enhanced Dß3 expression. Also, Dα1 RNAi enhanced Dα7 expression, Dα2 RNAi reduced Dα1, Dα6, and Dα7 expression and Dα3 RNAi reduced Dα1 expression while enhancing Dα2 expression, respectively. In most cases, RNAi treatment of either Dα1 or Dα2 reduced neonicotinoid toxicity in larvae, but Dα2 RNAi enhanced neonicotinoid sensitivity in adults reflecting the affinity-reducing effect of Dα2. Substituting each of Dα1, Dα2, and Dα3 subunits by Dα4 or Dß3 subunit mostly increased neonicotinoid affinity and reduced efficacy. These results are important because they indicate that neonicotinoid actions involve the integrated activity of multiple nAChR subunit combinations and counsel caution in interpreting neonicotinoid actions simply in terms of toxicity.


Subject(s)
Insecticides , Receptors, Nicotinic , Bees , Animals , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Receptors, Nicotinic/genetics , Receptors, Nicotinic/metabolism , Neonicotinoids , Drosophila/metabolism , Insecticides/toxicity , Insecticides/metabolism , Insecta
5.
Pestic Biochem Physiol ; 187: 105177, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36127041

ABSTRACT

Insect nicotinic acetylcholine receptors (nAChRs) require cofactors for functional heterologous expression. A previous study revealed that TMX3 was crucial for the functional expression of Drosophila melanogaster Dα1/Dß1 nAChRs in Xenopus laevis oocytes, while UNC-50 and RIC-3 enhanced the acetylcholine (ACh)-induced responses of the nAChRs. However, it is unclear whether the coexpression of UNC-50 and RIC-3 with TMX3 and the subunit stoichiometry affect pharmacology of Dα1/Dß1 nAChRs when expressed in X. laevis oocytes. We have investigated the effects of coexpressing UNC-50 and RIC-3 with TMX3 as well as changing the subunit stoichiometry on the agonist activity of ACh and imidacloprid on the Dα1/Dß1 nAChRs. UNC-50 and RIC-3 hardly affected the agonist affinity of ACh and imidacloprid for the Dα1/Dß1 nAChRs formed by injecting into X. laevis oocytes with an equal amount mixture of the subunit cRNAs, but enhanced current amplitude of the ACh-induced response. Imidacloprid showed higher affinity for the Dß1 subunit-excess Dα1/Dß1 (Dα1/Dß1 = 1/5) nAChRs than the Dα1 subunit-excess Dα1/Dß1 (Dα1/Dß1 = 5/1) nAChRs, suggesting that imidacloprid prefers the Dα1-Dß1 orthosteric site over the Dα1-Dα1 orthosteric site.


Subject(s)
Receptors, Nicotinic , Acetylcholine/pharmacology , Animals , Drosophila melanogaster/metabolism , Neonicotinoids , Nitro Compounds , Oocytes/metabolism , Receptors, Nicotinic/genetics , Receptors, Nicotinic/metabolism , Xenopus laevis/metabolism , ras Proteins/metabolism , ras Proteins/pharmacology
6.
J Agric Food Chem ; 70(28): 8645-8652, 2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35793553

ABSTRACT

Natural pesticides pyrethrins biosynthesized by Tanacetum cinrerariifolium are biodegradable and safer insecticides for pest insect control. TcGLIP, a GDSL lipase underpinning the ester bond formation in pyrethrins, exhibits high stereo-specificity for acyl-CoA and alcohol substrates. However, it is unknown how the enzyme recognizes the other structural features of the substrates and whether such specificity affects the product amount and composition in T. cinrerariifolium. We report here that the cysteamine moiety in (1R,3R)-chrysanthemoyl CoA and the conjugated diene moiety in (S)-pyrethrolone play key roles in the interactions with TcGLIP. CoA released from chrysanthemoyl CoA in the pyrethrin-forming reaction reduces the substrate affinity for TcGLIP by feedback inhibition. (S)-Pyrethrolone shows the highest catalytic efficiency for TcGLIP, followed by (S)-cinerolone and (S)-jasmololone, contributing, at least in part, to determine the pyrethrin compositions in T. cinerariifolium.


Subject(s)
Chrysanthemum cinerariifolium , Insecticides , Pyrethrins , Chrysanthemum cinerariifolium/chemistry , Coenzyme A , Insecticides/chemistry , Lipase/metabolism , Pyrethrins/chemistry , Substrate Specificity
7.
Pestic Biochem Physiol ; 183: 105074, 2022 May.
Article in English | MEDLINE | ID: mdl-35430068

ABSTRACT

Meroterpenoid compounds chrodrimanins produced by Talaromyces sp. YO-2 have been shown to act as competitive antagonists of silkworm larval GABAA receptors using electrophysiology, yet no further evidence has been provided to support such an action. We have investigated the actions of chrodrimanin B on rat brain GABAA receptors by binding assays with non-competitive ligand of GABAA receptors [3H]EBOB and competitive ligands [3H]gabazine and [3H]muscimol. Chrodrimanin B did not significantly affect the binding of [3H]EBOB while reducing the binding of [3H]gabazine and [3H]muscimol to the rat membrane preparations. Chrodrimanin B increased the dissociation constant Kd of [3H]gabazine and [3H]muscimol without significantly affecting the maximum binding, pointing to competitive interactions of chrodrimanin B with rat GABAA receptors in support of our previous observation that the compound acts as a competitive antagonist on the silkworm larval GABA receptor.


Subject(s)
Bombyx , Polyketides , Receptors, GABA-A , Sesquiterpenes , Animals , Binding, Competitive , Bombyx/metabolism , Brain/metabolism , Larva/metabolism , Muscimol/metabolism , Muscimol/pharmacology , Polyketides/pharmacology , Rats , Receptors, GABA-A/metabolism , Sesquiterpenes/pharmacology , gamma-Aminobutyric Acid/metabolism
8.
Biosci Biotechnol Biochem ; 86(2): 157-164, 2022 Jan 24.
Article in English | MEDLINE | ID: mdl-34849545

ABSTRACT

The Cys-loop superfamily of ligand-gated ion channels (Cys-loop receptors) is one of the most ubiquitous ion channel families in vertebrates and invertebrates. Despite their ubiquity, they are targeted by several classes of pesticides, including neonicotinoids, phenylpyrazols, and macrolides such as ivermectins. The current commercialized compounds have high target site selectivity, which contributes to the safety of insecticide use. Structural analyses have accelerated progress in this field; notably, the X-ray crystal structures of acetylcholine binding protein and glutamate-gated Cl channels revealed the details of the molecular interactions between insecticides and their targets. Recently, the functional expression of the insect nicotinic acetylcholine receptor (nAChR) has been described, and detailed evaluations using the insect nAChR have emerged. This review discusses the basic concepts and the current insights into the molecular mechanisms of neuroactive insecticides targeting the ligand-gated ion channels, particularly Cys-loop receptors, and presents insights into target-based selectivity, resistance, and future drug design.


Subject(s)
Insecticides
9.
PLoS Genet ; 17(7): e1009677, 2021 07.
Article in English | MEDLINE | ID: mdl-34237075

ABSTRACT

Pyrethrum extract from dry flowers of Tanacetum cinerariifolium (formally Chrysanthemum cinerariifolium) has been used globally as a popular insect repellent against arthropod pests for thousands of years. However, the mechanistic basis of pyrethrum repellency remains unknown. In this study, we found that pyrethrum spatially repels and activates olfactory responses in Drosophila melanogaster, a genetically tractable model insect, and the closely-related D. suzukii which is a serious invasive fruit crop pest. The discovery of spatial pyrethrum repellency and olfactory response to pyrethrum in D. melanogaster facilitated our identification of four odorant receptors, Or7a, Or42b, Or59b and Or98a that are responsive to pyrethrum. Further analysis showed that the first three Ors are activated by pyrethrins, the major insecticidal components in pyrethrum, whereas Or98a is activated by (E)-ß-farnesene (EBF), a sesquiterpene and a minor component in pyrethrum. Importantly, knockout of Or7a, Or59b or Or98a individually abolished fly avoidance to pyrethrum, while knockout of Or42b had no effect, demonstrating that simultaneous activation of Or7a, Or59b and Or98a is required for pyrethrum repellency in D. melanogaster. Our study provides insights into the molecular basis of repellency of one of the most ancient and globally used insect repellents. Identification of pyrethrum-responsive Ors opens the door to develop new synthetic insect repellent mixtures that are highly effective and broad-spectrum.


Subject(s)
Chrysanthemum cinerariifolium/metabolism , Insect Repellents/chemistry , Receptors, Odorant/metabolism , Animals , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Flowers , Insect Repellents/metabolism , Insecticides/chemistry , Odorants/analysis , Pyrethrins/chemistry , Pyrethrins/metabolism , Receptors, Odorant/genetics , Receptors, Odorant/physiology , Sesquiterpenes/chemistry
10.
Nat Commun ; 12(1): 2553, 2021 05 05.
Article in English | MEDLINE | ID: mdl-33953207

ABSTRACT

Pyrethrum extracts from flower heads of Chrysanthemum spp. have been used worldwide in insecticides and repellents. While the molecular mechanisms of its insecticidal action are known, the molecular basis of pyrethrum repellency remains a mystery. In this study, we find that the principal components of pyrethrum, pyrethrins, and a minor component, (E)-ß-farnesene (EBF), each activate a specific type of olfactory receptor neurons in Aedes aegypti mosquitoes. We identify Ae. aegypti odorant receptor 31 (AaOr31) as a cognate Or for EBF and find that Or31-mediated repellency is significantly synergized by pyrethrin-induced activation of voltage-gated sodium channels. Thus, pyrethrum exerts spatial repellency through a novel, dual-target mechanism. Elucidation of this two-target mechanism may have potential implications in the design and development of a new generation of synthetic repellents against major mosquito vectors of infectious diseases.


Subject(s)
Chrysanthemum cinerariifolium/metabolism , Culicidae/drug effects , Insect Repellents/pharmacology , Insecticides/pharmacology , Pyrethrins/pharmacology , Aedes/drug effects , Animals , Chrysanthemum cinerariifolium/genetics , Gene Knockout Techniques , Mosquito Control , Mosquito Vectors , Neurons , Receptors, Odorant/genetics , Voltage-Gated Sodium Channels
11.
Proc Natl Acad Sci U S A ; 117(28): 16283-16291, 2020 07 14.
Article in English | MEDLINE | ID: mdl-32611810

ABSTRACT

The difficulty of achieving robust functional expression of insect nicotinic acetylcholine receptors (nAChRs) has hampered our understanding of these important molecular targets of globally deployed neonicotinoid insecticides at a time when concerns have grown regarding the toxicity of this chemotype to insect pollinators. We show that thioredoxin-related transmembrane protein 3 (TMX3) is essential to enable robust expression in Xenopus laevis oocytes of honeybee (Apis mellifera) and bumblebee (Bombus terrestris) as well as fruit fly (Drosophila melanogaster) nAChR heteromers targeted by neonicotinoids and not hitherto robustly expressed. This has enabled the characterization of picomolar target site actions of neonicotinoids, findings important in understanding their toxicity.


Subject(s)
Insect Proteins/metabolism , Insecticides/pharmacology , Neonicotinoids/pharmacology , Nicotinic Agonists/pharmacology , Receptors, Nicotinic/metabolism , Acetylcholine/pharmacology , Animals , Bees/metabolism , Dose-Response Relationship, Drug , Drosophila melanogaster/metabolism , Insect Proteins/agonists , Insect Proteins/genetics , Oocytes/metabolism , Protein Subunits/antagonists & inhibitors , Protein Subunits/genetics , Protein Subunits/metabolism , Receptors, Nicotinic/genetics , Thioredoxins/genetics , Thioredoxins/metabolism , Xenopus laevis
12.
J Radiat Res ; 61(4): 511-516, 2020 Jul 06.
Article in English | MEDLINE | ID: mdl-32567663

ABSTRACT

Thyroid tumors are the most common types of endocrine malignancies and are commonly treated with radioactive iodine (RAI) to destroy remaining cancer cells following surgical intervention. We previously reported that the expression levels of double-stranded DNA-dependent protein kinase catalytic subunit (DNA-PKcs), which plays a key role in non-homologous end joining, are correlated with the radiosensitivity of cancer cells. Specifically, cells expressing high levels of DNA-PKcs exhibited radiation resistance, whereas cells expressing low levels were sensitive to radiation treatment. In this study, we observed full-length native DNA-PKcs (460 kDa) in radiation-resistant FRO and KTC-2 cells through western blot analysis using an antibody against the C-terminus of DNA-PKcs. In contrast, cleaved DNA-PKcs (175 kDa) were observed in radiation-sensitive TPC-1 and KTC-1 cells. Almost equal amounts of DNA-PKcs were observed in moderately radiation-sensitive WRO cells. We also describe a simple method for the prediction of radiation therapy efficacy in individual cases of thyroid cancers based on staining for DNA-PKcs in human cancer cell lines. Immunofluorescent staining showed that native DNA-PKcs was localized largely in the cytoplasm and only rarely localized in the nuclei of radiation-resistant thyroid cancer cells, whereas in radiation-sensitive cancer cells a 175-kDa cleaved C-terminal fragment of DNA-PKcs was localized mainly inside the nuclei. Therefore, DNA-PKcs moved to the nucleus after γ-ray irradiation. Our results suggest a new method for classifying human thyroid tumors based on their cellular distribution patterns of DNA-PKcs in combination with their radiosensitivity.


Subject(s)
DNA-Activated Protein Kinase/metabolism , Thyroid Neoplasms/metabolism , Thyroid Neoplasms/radiotherapy , Catalytic Domain , Cell Line, Tumor , Cell Nucleus/metabolism , Cytoplasm/metabolism , DNA Breaks, Double-Stranded , DNA End-Joining Repair , DNA Repair , Humans , Immunohistochemistry , Iodine Radioisotopes , Microscopy, Fluorescence , Protein Domains , Radiation Tolerance
13.
Sci Rep ; 10(1): 7529, 2020 05 05.
Article in English | MEDLINE | ID: mdl-32371996

ABSTRACT

Neonicotinoids selectively modulate insect nicotinic acetylcholine receptors (insect nAChRs). Studies have shown that serine with ability to form a hydrogen bond in loop C of some insect nAChR α subunits and glutamate with a negative charge at the corresponding position in vertebrate nAChRs may contribute to enhancing and reducing the neonicotinoid actions, respectively. However, there is no clear evidence what loop C properties underpin the target site actions of neonicotinoids. Thus, we have investigated the effects of S221A and S221Q mutations in loop C of the Drosophila melanogaster Dα1 subunit on the agonist activity of imidacloprid and thiacloprid for Dα1/chicken ß2 nAChRs expressed in Xenopus laevis oocytes. The S221A mutation hardly affected either the affinity or efficacy for ACh and imidacloprid, whereas it only slightly reduced the efficacy for thiacloprid on the nAChRs with a higher composition ratio of ß2 to Dα1 subunits. The S221Q mutation markedly reduced the efficacy of the neonicotinoids for the nAChRs with a higher composition of the ß2 subunit lacking basic residues critical for binding neonicotinoids. Hence, we predict the possibility of enhanced neonicotinoid resistance in pest insect species by a mutation of the serine when it occurs in the R81T resistant populations lacking the basic residue in loop D of the ß1 subunit.


Subject(s)
Drosophila melanogaster/genetics , Insecticide Resistance/genetics , Receptors, Nicotinic/chemistry , Receptors, Nicotinic/genetics , Animals , Chickens , Drosophila Proteins/chemistry , Drosophila Proteins/genetics , Female , Glutamic Acid/chemistry , Hydrogen Bonding , Insecticides , Mutation , Neonicotinoids/chemistry , Nitro Compounds , Oocytes , Protein Domains , Thiazines , Xenopus laevis
14.
Front Genet ; 11: 114, 2020.
Article in English | MEDLINE | ID: mdl-32153648

ABSTRACT

Inter-organismal communications below ground, such as plant-microbe interactions in the rhizosphere, affect plant growth. Metabolites are shown to play important roles in biological communication, but there still remain a large number of metabolites in soil to be uncovered. Metabolomics, a technique for the comprehensive analysis of metabolites in samples, may uncover the molecules that intermediate these interactions. We conducted a multivariate analysis using liquid chromatography (LC)-mass spectrometry (MS)-based untargeted metabolomics in several soil samples and also targeted metabolome analysis for the identification of the candidate compounds in soil. We identified okaramine A, B, and C in the rhizosphere soil of hairy vetch. Okaramines are indole alkaloids first identified in soybean pulp (okara) inoculated with Penicillium simplicissimum AK-40 and are insecticidal. Okaramine B was detected in the rhizosphere from an open field growing hairy vetch. Okaramine B was also detected in both bulk and rhizosphere soils of soybean grown following hairy vetch, but not detected in soils of soybean without hairy vetch growth. These results suggested that okaramines might be involved in indirect defense of plants against insects. To our knowledge, this is the first report of okaramines in the natural environment. Untargeted and targeted metabolomics would be useful to uncover the chemistry of the rhizosphere.

15.
J Radiat Res ; 61(2): 171-176, 2020 Mar 23.
Article in English | MEDLINE | ID: mdl-32052028

ABSTRACT

Wortmannin, a fungal metabolite, is a specific inhibitor of the phosphatidylinositol 3-kinase (PI3K) family, which includes double-stranded DNA dependent protein kinase (DNA-PK) and ataxia telangiectasia mutated kinase (ATM). We investigated the effects of wortmannin on DNA damage in DNA-PK-deficient cells obtained from severe combined immunodeficient mice (SCID cells). Survival of wortmannin-treated cells decreased in a concentration-dependent manner. After treatment with 50 µM wortmannin, survival decreased to 60% of that of untreated cells. We observed that treatment with 20 and 50 µM wortmannin induced DNA damage equivalent to that by 0.37 and 0.69 Gy, respectively, of γ-ray radiation. The accumulation of DNA double-strand breaks (DSBs) in wortmannin-treated SCID cells was assessed using pulsed-field gel electrophoresis. The maximal accumulation was observed 4 h after treatment. Moreover, the presence of DSBs was confirmed by the ability of nuclear extracts from γ-ray-irradiated SCID cells to produce in vitro phosphorylation of histone H2AX. These results suggest that wortmannin induces cellular toxicity by accumulation of spontaneous DSBs through inhibition of ATM.


Subject(s)
DNA Breaks, Double-Stranded/drug effects , Phosphatidylinositol 3-Kinase/metabolism , Protein Kinase Inhibitors/pharmacology , Wortmannin/pharmacology , Animals , Cell Line , Cell Survival/drug effects , Histones/metabolism , Humans , Phosphorylation/drug effects , Radiation Tolerance/drug effects
16.
Bioorg Med Chem ; 28(6): 115347, 2020 03 15.
Article in English | MEDLINE | ID: mdl-32044231

ABSTRACT

The extract of Tabebuia avellanedae has been used as a folk medicine, and the various biological activities of T. avellanedae have been extensively studied. However, few studies have reported which natural products play a role in their biological effects. In this study, we evaluated representative naphthoquinones isolated from T. avellanedae and found that furanonaphthoquinones were the key structures required to exhibit STAT3 phosphorylation inhibitory activities. Our SAR analysis indicated that removal of a hydroxyl group enhanced the STAT3 phosphorylation inhibitory activity. In addition, the combined results of a mobility shift assay, SH2 domain binding assay, and docking simulation by Autodock 4.2.6 suggested that (S)-5-hydroxy-2-(1-hydroxyethyl)naphtho[2,3-b]furan-4,9-dione (1) could directly bind to the hinge region of STAT3.


Subject(s)
Naphthoquinones/pharmacology , STAT3 Transcription Factor/antagonists & inhibitors , Tabebuia/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Humans , Molecular Structure , Naphthoquinones/chemistry , Naphthoquinones/isolation & purification , STAT3 Transcription Factor/metabolism , Structure-Activity Relationship
17.
Annu Rev Pharmacol Toxicol ; 60: 241-255, 2020 01 06.
Article in English | MEDLINE | ID: mdl-31914891

ABSTRACT

Neonicotinoids have been used to protect crops and animals from insect pests since the 1990s, but there are concerns regarding their adverse effects on nontarget organisms, notably on bees. Enhanced resistance to neonicotinoids in pests is becoming well documented. We address the current understanding of neonicotinoid target site interactions, selectivity, and metabolism not only in pests but also in beneficial insects such as bees. The findings are relevant to the management of both neonicotinoids and the new generation of pesticides targeting insect nicotinic acetylcholine receptors.


Subject(s)
Insect Control/methods , Insecticides/pharmacology , Neonicotinoids/pharmacology , Animals , Bees , Humans , Insecticide Resistance , Insecticides/toxicity , Molecular Targeted Therapy , Neonicotinoids/toxicity , Receptors, Nicotinic/drug effects , Receptors, Nicotinic/metabolism
18.
Int J Hyperthermia ; 36(1): 438-443, 2019.
Article in English | MEDLINE | ID: mdl-30922135

ABSTRACT

PURPOSE: Mouse double-stranded DNA-dependent protein kinase (DNA-PK) activity is heat sensitive. Recovery of heat-inactivated DNA repair activity is a problem after combination therapy with radiation and heat. We investigated the mechanism of recovery of heat-inactivated DNA-PK activity. METHODS: Hybrid cells containing a fragment of human chromosome 8 in scid cells (RD13B2) were used. DNA-PK activity was measured by an in vitro assay. Immunoprecipitation of the nuclear extract was performed with an anti-Ku80 antibody. Proteins co-precipitated with Ku80 were separated by sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis and detected by Western blotting using anti-heat shock protein (HSP)72 and anti-heat shock cognate protein (HSC)73 antibodies. HSC73 was overexpressed with the pcDNA3.1 vector. Short hairpin (sh)RNA was used to downregulate HSC73 and HSP72. RESULTS: The activity of heat-inactivated DNA-PK recovered to about 50% of control during an additional incubation at 37 °C after heat treatment at 44 °C for 15 min in the presence of cycloheximide (which inhibits de novo protein synthesis). Maximal recovery was observed within 3 h of incubation at 37 °C after heat treatment. Constitutively expressed HSC73, which folds newly synthesized proteins, reached maximal levels 3 h after heat treatment using a co-immunoprecipitation assay with the Ku80 protein. Inhibiting HSC73, but not HSP72, expression with shRNA decreased the recovery of DNA-PK activity after heat treatment. CONCLUSIONS: These results suggest that de novo protein synthesis is unnecessary for recovery of some heat-inactivated DNA-PK. Rather, it might be reactivated by the molecular chaperone activity of HSC73, but not HSP72.


Subject(s)
HSC70 Heat-Shock Proteins/metabolism , Heat-Shock Proteins/metabolism , Ku Autoantigen/metabolism , Animals , Humans , Mice
19.
J Radiat Res ; 60(2): 171-177, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30476230

ABSTRACT

The prognosis and treatment of thyroid cancer depends on the type and stage of the disease. Radiosensitivity differs among cancer cells owing to their varying capacity for repair after irradiation. Radioactive iodine can be used to destroy thyroid cancer cells. However, patient prognosis and improvement after irradiation varies. Therefore, predictive measures are important for avoiding unnecessary exposure to radiation. We describe a new method for predicting the effects of radiation in individual cases of thyroid cancer based on the DNA-dependent protein kinase (DNA-PK) activity level in cancer cells. The radiation sensitivity, DNA-PK activity, and cellular levels of DNA-PK complex subunits in five human thyroid cancer cell lines were analyzed in vitro. A positive correlation was observed between the D10 value (radiation dose that led to 10% survival) of cells and DNA-PK activity. This correlation was not observed after treatment with NU7441, a DNA-PK-specific inhibitor. A significant correlation was also observed between DNA-PK activity and expression levels of the DNA-PK catalytic subunit (DNA-PKcs). Cells expressing low DNA-PKcs levels were radiation-sensitive, and cells expressing high DNA-PKcs levels were radiation-resistant. Our results indicate that radiosensitivity depends on the expression level of DNA-PKcs in thyroid cancer cell lines. Thus, the DNA-PKcs expression level is a potential predictive marker of the success of radiation therapy for thyroid tumors.


Subject(s)
DNA-Activated Protein Kinase/metabolism , Nuclear Proteins/metabolism , Radiation Tolerance , Thyroid Neoplasms/enzymology , Thyroid Neoplasms/radiotherapy , Cell Line, Tumor , Cell Survival/radiation effects , Chromones/pharmacology , Chromones/therapeutic use , Gamma Rays , Humans , Morpholines/pharmacology , Morpholines/therapeutic use , Protein Subunits/metabolism , Thyroid Neoplasms/drug therapy
20.
Curr Opin Insect Sci ; 30: 86-92, 2018 12.
Article in English | MEDLINE | ID: mdl-30553491

ABSTRACT

Neonicotinoids are insecticides that target insect nicotinic acetylcholine receptors (nAChRs), exhibiting high selective toxicity to insects over vertebrates and good systemic activity in crop plants. For these reasons, neonicotinoids currently make up ∼30% of insecticide sales worldwide. However, due to their adverse impact on pollinators such as honey bees and bumble bees, neonicotinoids are being banned from the EU, and other countries may follow. It is therefore crucial to understand the mechanism underlying neonicotinoid actions on pollinators as well as on the nAChRs of pests, with a view to understanding their selectivity. Here we review the molecular mechanisms of neonicotinoid actions at an atomic level, through structural and resistance mechanism studies and propose relevant research topics for further studies on the future of pest management.


Subject(s)
Bees/drug effects , Insecticides/toxicity , Neonicotinoids/toxicity , Pollination/drug effects , Animals , Insecta/drug effects , Insecticide Resistance/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...