Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Mamm Genome ; 18(2): 125-36, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17347893

ABSTRACT

To map quantitative trait loci (QTL) for growth and carcass traits in a purebred Japanese Black cattle population, we conducted multiple QTL analyses using 15 paternal half-sib families comprising 7860 offspring. We identified 40 QTL with significant linkages at false discovery rates of less than 0.1, which included 12 for intramuscular fat deposition called marbling and 12 for cold carcass weight or body weight. The QTL each explained 2%-13% of the phenotypic variance. These QTL included many replications and shared hypothetical identical-by-descent (IBD) alleles. The QTL for CW on BTA14 was replicated in five families with significant linkages and in two families with a 1% chromosome-wise significance level. The seven sires shared a 1.1-Mb superior Q haplotype as a hypothetical IBD allele that corresponds to the critical region previously refined by linkage disequilibrium mapping. The QTL for marbling on BTA4 was replicated in two families with significant linkages. The QTL for marbling on BTA6, 7, 9, 10, 20, and 21 and the QTL for body weight on BTA6 were replicated with 1% and/or 5% chromosome-wise significance levels. There were shared IBD Q or q haplotypes in the marbling QTL on BTA4, 6, and 10. The allele substitution effect of these haplotypes ranged from 0.7 to 1.2, and an additive effect between the marbling QTL on BTA6 and 10 was observed in the family examined. The abundant and replicated QTL information will enhance the opportunities for positional cloning of causative genes for the quantitative traits and efficient breeding using marker-assisted selection.


Subject(s)
Cattle/genetics , Growth/genetics , Quantitative Trait Loci , Reproduction/genetics , Animals , Cattle/growth & development , Chromosome Mapping , Computer Simulation , DNA/genetics , DNA/isolation & purification , Genome , Japan
2.
Mamm Genome ; 16(9): 731-7, 2005 Sep.
Article in English | MEDLINE | ID: mdl-16245030

ABSTRACT

Congenital multiple ocular defects (MOD) in Japanese black cattle is a hereditary ocular disorder with an autosomal recessive manner of inheritance, showing developmental defects of the lens, retina, and iris, persistent embryonic eye vascularization, and microphthalmia. In the present study, we mapped the locus responsible for the disorder by linkage analysis using 240 microsatellite markers covering the entire bovine genome and an inbred pedigree obtained from commercial herds. The linkage analysis demonstrated a significant linkage between the disorder locus and markers on the proximal region of bovine Chromosome (BTA) 18 with the maximum LOD score of 5.1. Homozygosity mapping using the haplotype of the linked markers further refined the critical region. The results revealed the localization of the locus responsible for MOD in an approximately 6.6-cM region of BTA18. Comparison of published linkage and radiation hybrid (RH) maps of BTA18 with its evolutionary ortholog, human Chromosome (HSA) 16, revealed several potential candidate genes for the disorder including the MAF and FOXC 2 genes.


Subject(s)
Cattle Diseases/genetics , Chromosome Mapping/veterinary , Chromosomes, Mammalian/genetics , Eye Diseases, Hereditary/veterinary , Animals , Cattle , Eye Diseases, Hereditary/genetics , Haplotypes/genetics , Microsatellite Repeats/genetics , Pedigree
3.
Genomics ; 85(4): 413-24, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15780744

ABSTRACT

A bovine whole genome 7000-rad radiation hybrid (RH) panel, SUNbRH(7000-rad), was constructed to build a high-resolution RH map. The Shirakawa-USDA linkage map served as a scaffold to construct a framework map of 3216 microsatellites on which 2377 ESTs were ordered. The resulting RH map provided essentially complete coverage across the genome, with 1 cR7000 corresponding to 114 kb, and a cattle-human comparative map of 1716 bovine genes and sequences annotated in the human genome, which covered 79 and 72% of the bovine and human genomes, respectively. We then integrated the bovine RH and comparative maps with BAC fingerprint information in to construct a detailed, BAC-based physical map covering a reported 40-cM quantitative trait locus region for intramuscular fat or "marbling" on BTA 4. In summary, the new, high-resolution SUNbRH7000-rad, comparative, Shirakawa-USDA linkage, and BAC fingerprint maps provide a set of genomic tools for fine mapping regions of interest in cattle.


Subject(s)
Cattle/genetics , Genome , Microsatellite Repeats/genetics , Radiation Hybrid Mapping , Animals , Expressed Sequence Tags , Humans
4.
BMC Genomics ; 5: 77, 2004 Oct 08.
Article in English | MEDLINE | ID: mdl-15473903

ABSTRACT

BACKGROUND: Bovine chromosome (BTA) 15 contains a quantitative trait loci (QTL) for meat tenderness, as well as several breaks in synteny with human chromosome (HSA) 11. Both linkage and radiation hybrid (RH) maps of BTA 15 are available, but the linkage map lacks gene-specific markers needed to identify genes underlying the QTL, and the gene-rich RH map lacks associations with marker genotypes needed to define the QTL. Integrating the maps will provide information to further explore the QTL as well as refine the comparative map between BTA 15 and HSA 11. A recently developed approach to integrating linkage and RH maps uses both linkage and RH data to resolve a consensus marker order, rather than aligning independently constructed maps. Automated map construction procedures employing this maximum-likelihood approach were developed to integrate BTA RH and linkage data, and establish comparative positions of BTA 15 markers with HSA 11 homologs. RESULTS: The integrated BTA 15 map represents 145 markers; 42 shared by both data sets, 36 unique to the linkage data and 67 unique to RH data. Sequence alignment yielded comparative positions for 77 bovine markers with homologs on HSA 11. The map covers approximately 32% of HSA 11 sequence in five segments of conserved synteny, another 15% of HSA 11 is shared with BTA 29. Bovine and human order are consistent in portions of the syntenic segments, but some rearrangement is apparent. Comparative positions of gene markers near the meat tenderness QTL indicate the region includes separate segments of HSA 11. The two microsatellite markers flanking the QTL peak are between defined syntenic segments. CONCLUSIONS: Combining data to construct an integrated map not only consolidates information from different sources onto a single map, but information contributed from each data set increases the accuracy of the map. Comparison of bovine maps with well annotated human sequence can provide useful information about genes near mapped bovine markers, but bovine gene order may be different than human. Procedures to connect genetic and physical mapping data, build integrated maps for livestock species, and connect those maps to more fully annotated sequence can be automated, facilitating the maintenance of up-to-date maps, and providing a valuable tool to further explore genetic variation in livestock.


Subject(s)
Chromosomes, Mammalian/genetics , Genetic Linkage/genetics , Radiation Hybrid Mapping/methods , Animals , Cattle , Chromosomes, Human, Pair 11/genetics , Conserved Sequence/genetics , Genetic Markers/genetics , Humans , Meat/classification , Microsatellite Repeats/genetics , Molecular Sequence Data , Quantitative Trait Loci/genetics , Sequence Homology, Nucleic Acid , Synteny/genetics
5.
Genome Res ; 14(10A): 1987-98, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15466297

ABSTRACT

A microsatellite-based high-density genetic map facilitates for fine mapping of hereditary traits of interest, characterization of meiosis, and providing a foundation for physical map construction. Here, we developed a comprehensive genetic map on the basis of >880,000 genotypes across the USDA MARC cattle reference families with a potential genetic resolution of 0.8 cM at the 95% confidence level ( approximately 800 kb in the bovine genome). We incorporated 2325 microsatellites into the second-generation genetic map by linkage analysis based on sex-averaged two-point LOD scores (>3.0), of which 2293 were fine-mapped by multipoint linkage analysis. The new 3160-cM map comprised of 29 sex-averaged autosomal linkage groups and a sex-specific X-chromosome linkage group includes 3960 markers with 2389 positions, resulting in an average interval size of 1.4 cM. More than half (51%) of the total length of the map is covered with intervals of 2.0 cM or less, and the largest gap is a 10.2-cM interval on the X-linkage group. The new map should accelerate fine mapping and positional cloning of genes for genetic diseases and economically important traits in cattle, as well as related livestock species, such as sheep and goat.


Subject(s)
Genome , Microsatellite Repeats/genetics , Animals , Cattle , Genetic Linkage , Lod Score , Polymerase Chain Reaction
6.
Proc Natl Acad Sci U S A ; 99(16): 10549-54, 2002 Aug 06.
Article in English | MEDLINE | ID: mdl-12136126

ABSTRACT

Chondrodysplastic dwarfism in Japanese brown cattle is an autosomal recessive disorder characterized by short limbs. Previously, we mapped the locus responsible for the disease on the distal end of bovine chromosome 6. Here, we narrowed the critical region to approximately 2 cM by using linkage analysis, constructed a BAC and YAC contig covering this region, and identified a gene, LIMBIN (LBN), that possessed disease-specific mutations in the affected calves. One mutation was a single nucleotide substitution leading to an activation of a cryptic splicing donor site and the other was a one-base deletion resulting in a frameshift mutation. Strong expression of the Lbn gene was observed in limb buds of developing mouse embryos and in proliferating chondrocytes and bone-forming osteoblasts in long bones. These findings indicate that LBN is responsible for bovine chondrodysplastic dwarfism and has a critical role in a skeletal development.


Subject(s)
Cattle Diseases/genetics , Dwarfism/veterinary , Osteochondrodysplasias/veterinary , Proteins/genetics , Amino Acid Sequence , Animals , Base Sequence , Cattle , Chromosome Mapping , Cloning, Molecular , DNA, Complementary , Dwarfism/genetics , Humans , Mice , Mice, Transgenic , Molecular Sequence Data , Osteochondrodysplasias/genetics , Pedigree
SELECTION OF CITATIONS
SEARCH DETAIL
...