Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
J Insect Sci ; 22(1)2022 Jan 01.
Article in English | MEDLINE | ID: mdl-35137137

ABSTRACT

Honey bees are eusocial animals that exhibit both individual and social immune responses, which influence colony health. This is especially well-studied regarding the mite Varroa destructor Anderson and Trueman (Parasitiformes: Varroidae), a parasite of honey bee brood and disease vector. Varroa was introduced relatively recently to Apis mellifera L. (Hymenoptera: Apidae) and is a major driver of the catastrophic die-off of honey bee colonies in the last decade. In contrast, the original host species, Apis cerana Fabricius (Hymenoptera: Apidae) is able to survive mite infestations with little effect on colony health and survival. This resilience is due in part to a newly identified social immune response expressed by developing worker brood. Varroa infested female A. cerana brood experience delayed development and eventually die in a process called 'social apoptosis'. Here, an individual's susceptibility to Varroa results in colony level resistance. We tested for the presence of the social apoptosis trait in two Varroa resistant stocks of A. mellifera (Pol-line and Russian) with different selection histories and compared them to a known Varroa-susceptible stock (Italian). We assessed the survival and development of worker brood reared in either highly or lightly infested host colonies, then receiving one of three treatments: uninfested, experimentally inoculated with a Varroa mite, or wounded to simulate Varroa damage. We found that response to treatment was only differentiated in brood reared in lightly infested host colonies, where experimentally infested Russian honey bees had decreased survival relative to the mite-susceptible Italian stock. This is the first evidence that social apoptosis can exist in Western honey bee populations.


Subject(s)
Bees/parasitology , Disease Resistance , Varroidae , Animals , Bees/immunology , Female , Host Specificity , Mite Infestations/veterinary
2.
Evol Lett ; 4(3): 200-211, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32547781

ABSTRACT

The trade-off between reproduction and self-maintenance is a cornerstone of life history theory, yet its proximate underpinnings are elusive. Here, we used an artificial selection approach to create replicated lines of Japanese quail (Coturnix japonica) that differ genetically in their reproductive investment. Whole transcriptome sequencing revealed that females from lines selected for high reproductive output show a consistent upregulation of genes associated with reproduction but a simultaneous downregulation of immune genes. Concordant phenotypic differences in immune function (i.e., specific antibody response against keyhole limpet hemocyanin) were observed between the selection lines, even in males who do not provide parental care. Our findings demonstrate the key role of obligate transcriptional constraints in the maintenance of life history variation. These constraints set fundamental limits to productivity and health in natural and domestic animal populations.

3.
Insects ; 10(11)2019 Nov 05.
Article in English | MEDLINE | ID: mdl-31694336

ABSTRACT

In animals, dietary restriction or suppression of genes involved in nutrient sensing tends to increase lifespan. In contrast, food restriction in honeybees (Apis mellifera) shortens lifespan by accelerating a behavioural maturation program that culminates in leaving the nest as a forager. Foraging is metabolically demanding and risky, and foragers experience increased rates of aging and mortality. Food-deprived worker bees forage at younger ages and are expected to live shorter lives. We tested whether suppression of a molecular nutrient sensing pathway is sufficient to accelerate the behavioural transition to foraging and shorten worker life. To achieve this, we reduced expression of the insulin receptor substrate (irs) gene via RNA interference in two selected lines of honeybees used to control for behavioural and genetic variation. irs encodes a membrane-associated protein in the insulin/insulin-like signalling (IIS) pathway that is central to nutrient sensing in animals. We measured foraging onset and lifespan and found that suppression of irs reduced worker bee lifespan in both genotypes, and that this effect was largely driven by an earlier onset of foraging behaviour in a genotype-conditional manner. Our results provide the first direct evidence that an IIS pathway gene influences behavioural maturation and lifespan in honeybees and highlight the importance of considering social environments and behaviours when investigating the regulation of aging and lifespan in social animals.

4.
Proc Biol Sci ; 284(1860)2017 Aug 16.
Article in English | MEDLINE | ID: mdl-28794224

ABSTRACT

Inbreeding depression refers to the reduction of fitness that results from matings between relatives. Evidence for reduced fitness in inbred individuals is widespread, but the strength of inbreeding depression varies widely both within and among taxa. Environmental conditions can mediate this variation in the strength of inbreeding depression, with environmental stress exacerbating the negative consequences of inbreeding. Parents can modify the environment experienced by offspring, and have thus the potential to mitigate the negative consequences of inbreeding. While such parental effects have recently been demonstrated during the postnatal period, the role of prenatal parental effects in influencing the expression of inbreeding depression remains unexplored. To address this gap, we performed matings between full-sibs or unrelated individuals in replicated lines of Japanese quail (Coturnix japonica) experimentally selected for high and low maternal egg provisioning. We show that in the low maternal investment lines hatching success was strongly reduced when parents were related. In the high maternal investment lines, however, this negative effect of inbreeding on hatching success was absent, demonstrating that prenatal maternal provisioning can alleviate the negative fitness consequences of inbreeding.


Subject(s)
Coturnix/physiology , Inbreeding Depression , Reproduction/physiology , Animals , Female
5.
Exp Gerontol ; 71: 103-8, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26254745

ABSTRACT

In comparative gerontology, highly social insects such as honey bees (Apis mellifera) receive much attention due to very different and flexible aging patterns among closely related siblings. While experimental strategies that manipulate socio-environmental factors suggest a causative link between aging and social signals and behaviors, the molecular underpinnings of this linkage are less well understood. Here we study the atypical localization of the egg-yolk protein vitellogenin (Vg) in the brain of the honey bee. Vg is known to influence honey bee social regulation and aging rate. Our findings suggest that Vg immunoreactivity in the brain is specifically localized within the class of non-neuronal glial cells. We discuss how these results can help explain the socially-dependent aging rate of honey bees.


Subject(s)
Bees/metabolism , Brain Chemistry/physiology , Longevity/physiology , Vitellogenins/analysis , Animals , Bees/genetics , Bees/physiology , Brain/cytology , Gene Expression/physiology , Hypopharynx/chemistry , Male , Neuroglia/chemistry , RNA, Messenger/genetics , Vitellogenins/genetics , Vitellogenins/physiology
6.
BMC Genomics ; 16: 107, 2015 Feb 21.
Article in English | MEDLINE | ID: mdl-25765996

ABSTRACT

BACKGROUND: Meiotic recombination has traditionally been explained based on the structural requirement to stabilize homologous chromosome pairs to ensure their proper meiotic segregation. Competing hypotheses seek to explain the emerging findings of significant heterogeneity in recombination rates within and between genomes, but intraspecific comparisons of genome-wide recombination patterns are rare. The honey bee (Apis mellifera) exhibits the highest rate of genomic recombination among multicellular animals with about five cross-over events per chromatid. RESULTS: Here, we present a comparative analysis of recombination rates across eight genetic linkage maps of the honey bee genome to investigate which genomic sequence features are correlated with recombination rate and with its variation across the eight data sets, ranging in average marker spacing ranging from 1 Mbp to 120 kbp. Overall, we found that GC content explained best the variation in local recombination rate along chromosomes at the analyzed 100 kbp scale. In contrast, variation among the different maps was correlated to the abundance of microsatellites and several specific tri- and tetra-nucleotides. CONCLUSIONS: The combined evidence from eight medium-scale recombination maps of the honey bee genome suggests that recombination rate variation in this highly recombining genome might be due to the DNA configuration instead of distinct sequence motifs. However, more fine-scale analyses are needed. The empirical basis of eight differing genetic maps allowed for robust conclusions about the correlates of the local recombination rates and enabled the study of the relation between DNA features and variability in local recombination rates, which is particularly relevant in the honey bee genome with its exceptionally high recombination rate.


Subject(s)
Bees/genetics , Evolution, Molecular , Meiosis/genetics , Recombination, Genetic , Animals , Base Composition/genetics , Chromosome Mapping , Chromosome Segregation/genetics , Chromosomes/genetics , Genome, Insect/genetics
7.
J Hered ; 106(2): 155-65, 2015.
Article in English | MEDLINE | ID: mdl-25596612

ABSTRACT

Variation in endocrine signaling is proposed to underlie the evolution and regulation of social life histories, but the genetic architecture of endocrine signaling is still poorly understood. An excellent example of a hormonally influenced set of social traits is found in the honey bee (Apis mellifera): a dynamic and mutually suppressive relationship between juvenile hormone (JH) and the yolk precursor protein vitellogenin (Vg) regulates behavioral maturation and foraging of workers. Several other traits cosegregate with these behavioral phenotypes, comprising the pollen hoarding syndrome (PHS) one of the best-described animal behavioral syndromes. Genotype differences in responsiveness of JH to Vg are a potential mechanistic basis for the PHS. Here, we reduced Vg expression via RNA interference in progeny from a backcross between 2 selected lines of honey bees that differ in JH responsiveness to Vg reduction and measured JH response and ovary size, which represents another key aspect of the PHS. Genetic mapping based on restriction site-associated DNA tag sequencing identified suggestive quantitative trait loci (QTL) for ovary size and JH responsiveness. We confirmed genetic effects on both traits near many QTL that had been identified previously for their effect on various PHS traits. Thus, our results support a role for endocrine control of complex traits at a genetic level. Furthermore, this first example of a genetic map of a hormonal response to gene knockdown in a social insect helps to refine the genetic understanding of complex behaviors and the physiology that may underlie behavioral control in general.


Subject(s)
Bees/physiology , Behavior, Animal/physiology , Gene Knockdown Techniques , Juvenile Hormones/physiology , Vitellogenins/physiology , Animals , Bees/genetics , Crosses, Genetic , Female , Genotype , Organ Size , Ovary/physiology , Phenotype , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Sequence Analysis, DNA
8.
Exp Gerontol ; 61: 113-22, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25497555

ABSTRACT

Honey bee workers display remarkable flexibility in the aging process. This plasticity is closely tied to behavioral maturation. Workers who initiate foraging behavior at earlier ages have shorter lifespans, and much of the variation in total lifespan can be explained by differences in pre-foraging lifespan. Vitellogenin (Vg), a yolk precursor protein, influences worker lifespan both as a regulator of behavioral maturation and through anti-oxidant and immune functions. Experimental reduction of Vg mRNA, and thus Vg protein levels, in wild-type bees results in precocious foraging behavior, decreased lifespan, and increased susceptibility to oxidative damage. We sought to separate the effects of Vg on lifespan due to behavioral maturation from those due to immune and antioxidant function using two selected strains of honey bees that differ in their phenotypic responsiveness to Vg gene knockdown. Surprisingly, we found that lifespans lengthen in the strain described as behaviorally and hormonally insensitive to Vg reduction. We then performed targeted gene expression analyses on genes hypothesized to mediate aging and lifespan: the insulin-like peptides (Ilp1 and 2) and manganese superoxide dismutase (mnSOD). The two honey bee Ilps are the most upstream components in the insulin-signaling pathway, which influences lifespan in Drosophila melanogaster and other organisms, while manganese superoxide dismutase encodes an enzyme with antioxidant functions in animals. We found expression differences in the llps in fat body related to behavior (llp1 and 2) and genetic background (Ilp2), but did not find strain by treatment effects. Expression of mnSOD was also affected by behavior and genetic background. Additionally, we observed a differential response to Vg knockdown in fat body expression of mnSOD, suggesting that antioxidant pathways may partially explain the strain-specific lifespan responses to Vg knockdown.


Subject(s)
Bees/physiology , Longevity , Vitellogenins/physiology , Adipose Tissue/metabolism , Animals , Brain/metabolism , Gene Knockdown Techniques , Genotype , Insect Proteins/physiology , Species Specificity , Superoxide Dismutase/physiology , Vitellogenins/genetics
9.
J Insect Physiol ; 69: 49-55, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24952326

ABSTRACT

The rise in metabolic disorders in the past decades has heightened focus on achieving a healthy dietary balance in humans. This is also an increasingly important issue in the management of honey bees (Apis mellifera) where poor nutrition has negative effects on health and productivity in agriculture, and nutrition is suggested as a contributing factor in the recent global declines in honey bee populations. As in other organisms, the insulin/insulin-like signaling (IIS) pathway is likely involved in maintaining nutrient homeostasis in honey bees. Honey bees have two insulin-like peptides (Ilps) with differing spatial expression patterns in the fat body suggesting that AmIlp1 potentially functions in lipid metabolism while AmIlp2 is a more general indicator of nutritional status. We fed caged worker bees artificial diets high in carbohydrates, proteins or lipids and measured expression of AmIlp1, AmIlp2, and the insulin receptor substrate (IRS) to test their responses to dietary macronutrients. We also measured lifespan, worker weight and gustatory sensitivity to sugar as measures of individual physical condition. We found that expression of AmIlp1 was affected by diet composition and was highest on a diet high in protein. Expression of AmIlp2 and AmIRS were not affected by diet. Workers lived longest on a diet high in carbohydrates and low in protein and lipids. However, bees fed this diet weighed less than those that received a diet high in protein and low in carbohydrates and lipids. Bees fed the high carbohydrates diet were also more responsive to sugar, potentially indicating greater levels of hunger. These results support a role for AmIlp1 in nutritional homeostasis and provide new insight into how unbalanced diets impact individual honey bee health.


Subject(s)
Bees/metabolism , Fat Body/metabolism , Nutritional Physiological Phenomena , Somatomedins/metabolism , Animals , Body Weight , Longevity , Sucrose
10.
J Exp Biol ; 216(Pt 19): 3724-32, 2013 Oct 01.
Article in English | MEDLINE | ID: mdl-23788711

ABSTRACT

In honey bees, vitellogenin (Vg) is hypothesized to be a major factor affecting hormone signaling, food-related behavior, immunity, stress resistance and lifespan. MicroRNAs, which play important roles in post-transcriptional gene regulation, likewise affect many biological processes. The actions of microRNAs and Vg are known to intersect in the context of reproduction; however, the role of these associations on social behavior is unknown. The phenotypic effects of Vg knockdown are best established and studied in the forager stage of workers. Thus, we exploited the well-established RNA interference (RNAi) protocol for Vg knockdown to investigate its downstream effects on microRNA population in honey bee foragers' brain and fat body tissue. To identify microRNAs that are differentially expressed between tissues in control and knockdown foragers, we used µParaflo microfluidic oligonucleotide microRNA microarrays. Our results showed that 76 and 74 microRNAs were expressed in the brain of control and knockdown foragers whereas 66 and 69 microRNAs were expressed in the fat body of control and knockdown foragers, respectively. Target prediction identified potential seed matches for a differentially expressed subset of microRNAs affected by Vg knockdown. These candidate genes are involved in a broad range of biological processes including insulin signaling, juvenile hormone (JH) and ecdysteroid signaling previously shown to affect foraging behavior. Thus, here we demonstrate a causal link between the Vg knockdown forager phenotype and variation in the abundance of microRNAs in different tissues, with possible consequences for the regulation of foraging behavior.


Subject(s)
Bees/genetics , Fat Body/metabolism , Gene Expression Regulation , Insect Proteins/genetics , MicroRNAs/genetics , Vitellogenins/genetics , Animals , Bees/physiology , Brain/metabolism , Feeding Behavior , Female , Male , Phenotype , RNA Interference
11.
Proc Biol Sci ; 279(1732): 1437-46, 2012 Apr 07.
Article in English | MEDLINE | ID: mdl-22048951

ABSTRACT

Social castes of eusocial insects may have arisen through an evolutionary modification of an ancestral reproductive ground plan, such that some adults emerge from development physiologically primed to specialize on reproduction (queens) and others on maternal care expressed as allo-maternal behaviour (workers). This hypothesis predicts that variation in reproductive physiology should emerge from ontogeny and underlie division of labour. To test these predictions, we identified physiological links to division of labour in a facultatively eusocial sweat bee, Megalopta genalis. Queens are larger, have larger ovaries and have higher vitellogenin titres than workers. We then compared queens and workers with their solitary counterparts-solitary reproductive females and dispersing nest foundresses-to investigate physiological variation as a factor in caste evolution. Within dyads, body size and ovary development were the best predictors of behavioural class. Queens and dispersers are larger, with larger ovaries than their solitary counterparts. Finally, we raised bees in social isolation to investigate the influence of ontogeny on physiological variation. Body size and ovary development among isolated females were highly variable, and linked to differences in vitellogenin titres. As these are key physiological predictors of social caste, our results provide evidence for developmental caste-biasing in a facultatively eusocial bee.


Subject(s)
Bees/physiology , Animals , Bees/anatomy & histology , Bees/growth & development , Biological Evolution , Female , Male , Ovary/growth & development , Reproduction/physiology , Social Behavior , Social Isolation
12.
J Exp Biol ; 214(Pt 9): 1488-97, 2011 May 01.
Article in English | MEDLINE | ID: mdl-21490257

ABSTRACT

Nutrient sensitive insulin-like peptides (ILPs) have profound effects on invertebrate metabolism, nutrient storage, fertility and aging. Many insects transcribe ILPs in specialized neurosecretory cells at changing levels correlated with life history. However, the major site of insect metabolism and nutrient storage is not the brain, but rather the fat body, where functions of ILP expression are rarely studied and poorly understood. Fat body is analogous to mammalian liver and adipose tissue, with nutrient stores that often correlate with behavior. We used the honey bee (Apis mellifera), an insect with complex behavior, to test whether ILP genes in fat body respond to experimentally induced changes of behavioral physiology. Honey bee fat body influences endocrine state and behavior by secreting the yolk protein precursor vitellogenin (Vg), which suppresses lipophilic juvenile hormone and social foraging behavior. In a two-factorial experiment, we used RNA interference (RNAi)-mediated vg gene knockdown and amino acid nutrient enrichment of hemolymph (blood) to perturb this regulatory module. We document factor-specific changes in fat body ilp1 and ilp2 mRNA, the bee's ILP-encoding genes, and confirm that our protocol affects social behavior. We show that ilp1 and ilp2 are regulated independently and differently and diverge in their specific expression-localization between fat body oenocyte and trophocyte cells. Insect ilp functions may be better understood by broadening research to account for expression in fat body and not only brain.


Subject(s)
Bees/genetics , Bees/physiology , Behavior, Animal/physiology , Fat Body/metabolism , Genes, Insect/genetics , Insulin/genetics , Social Behavior , Albumins/metabolism , Amino Acids/pharmacology , Animals , Bees/drug effects , Behavior, Animal/drug effects , Fat Body/cytology , Fat Body/drug effects , Fluorescent Antibody Technique , Gene Expression Regulation/drug effects , Hemolymph/drug effects , Hemolymph/metabolism , Honey , Insulin/metabolism , Juvenile Hormones/metabolism , Models, Biological , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reproducibility of Results , Titrimetry , Vitellogenins/genetics , Vitellogenins/metabolism
13.
Anim Behav ; 79(5): 1001-1006, 2010 May 01.
Article in English | MEDLINE | ID: mdl-20454635

ABSTRACT

In honeybee colonies, food collection is performed by a group of mostly sterile females called workers. After an initial nest phase, workers begin foraging for nectar and pollen, but tend to bias their collection towards one or the other. The foraging choice of honeybees is influenced by vitellogenin (vg), an egg-yolk precursor protein that is expressed although workers typically do not lay eggs. The forager reproductive ground plan hypothesis (RGPH) proposes an evolutionary path in which the behavioural bias toward collecting nectar or pollen on foraging trips is influenced by variation in reproductive physiology, such as hormone levels and vg gene expression. Recently, the connections between vg and foraging behaviour were challenged by Oldroyd and Beekman (2008), who concluded from their study that the ovary, and especially vg, played no role in foraging behaviour of bees. We address their challenge directly by manipulating vg expression by RNA interference- (RNAi) mediated gene knockdown in two honeybee genotypes with different foraging behaviour and reproductive physiology. We show that the effect of vg on the food-loading decisions of the workers occurs only in the genotype where timing of foraging onset (by age) is also sensitive to vg levels. In the second genotype, changing vg levels do not affect foraging onset or bias. The effect of vg on workers' age at foraging onset is explained by the well-supported double repressor hypothesis (DHR), which describes a mutually inhibitory relationship between vg and juvenile hormone (JH) - an endocrine factor that influences development, reproduction, and behaviour in many insects. These results support the RGPH and demonstrate how it intersects with an established mechanism of honeybee behavioural control.

14.
PLoS Genet ; 6(4): e1000896, 2010 Apr 01.
Article in English | MEDLINE | ID: mdl-20369023

ABSTRACT

Food choice and eating behavior affect health and longevity. Large-scale research efforts aim to understand the molecular and social/behavioral mechanisms of energy homeostasis, body weight, and food intake. Honey bees (Apis mellifera) could provide a model for these studies since individuals vary in food-related behavior and social factors can be controlled. Here, we examine a potential role of peripheral insulin receptor substrate (IRS) expression in honey bee foraging behavior. IRS is central to cellular nutrient sensing through transduction of insulin/insulin-like signals (IIS). By reducing peripheral IRS gene expression and IRS protein amount with the use of RNA interference (RNAi), we demonstrate that IRS influences foraging choice in two standard strains selected for different food-hoarding behavior. Compared with controls, IRS knockdowns bias their foraging effort toward protein (pollen) rather than toward carbohydrate (nectar) sources. Through control experiments, we establish that IRS does not influence the bees' sucrose sensory response, a modality that is generally associated with food-related behavior and specifically correlated with the foraging preference of honey bees. These results reveal a new affector pathway of honey bee social foraging, and suggest that IRS expressed in peripheral tissue can modulate an insect's foraging choice between protein and carbohydrate sources.


Subject(s)
Bees/genetics , Behavior, Animal , Down-Regulation , Insect Proteins/genetics , Insulin Receptor Substrate Proteins/genetics , Animals , Dietary Sucrose/metabolism , Insect Proteins/metabolism , Insulin Receptor Substrate Proteins/metabolism , Polymerase Chain Reaction , RNA Interference
15.
PLoS Biol ; 5(3): e62, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17341131

ABSTRACT

Temporal division of labor and foraging specialization are key characteristics of honeybee social organization. Worker honeybees (Apis mellifera) initiate foraging for food around their third week of life and often specialize in collecting pollen or nectar before they die. Variation in these fundamental social traits correlates with variation in worker reproductive physiology. However, the genetic and hormonal mechanisms that mediate the control of social organization are not understood and remain a central question in social insect biology. Here we demonstrate that a yolk precursor gene, vitellogenin, affects a complex suite of social traits. Vitellogenin is a major reproductive protein in insects in general and a proposed endocrine factor in honeybees. We show by use of RNA interference (RNAi) that vitellogenin gene activity paces onset of foraging behavior, primes bees for specialized foraging tasks, and influences worker longevity. These findings support the view that the worker specializations that characterize hymenopteran sociality evolved through co-option of reproductive regulatory pathways. Further, they demonstrate for the first time how coordinated control of multiple social life-history traits can originate via the pleiotropic effects of a single gene that affects multiple physiological processes.


Subject(s)
Bees/physiology , Social Behavior , Vitellogenins/genetics , Animals , Feeding Behavior
SELECTION OF CITATIONS
SEARCH DETAIL
...