Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters










Publication year range
1.
Nano Lett ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38833415

ABSTRACT

We implement circuit quantum electrodynamics (cQED) with quantum dots in bilayer graphene, a maturing material platform that can host long-lived spin and valley states. Our device combines a high-impedance (Zr ≈ 1 kΩ) superconducting microwave resonator with a double quantum dot electrostatically defined in a graphene-based van der Waals heterostructure. Electric dipole coupling between the subsystems allows the resonator to sense the electric susceptibility of the double quantum dot from which we reconstruct its charge stability diagram. We achieve sensitive and fast detection of the interdot transition with a signal-to-noise ratio of 3.5 within 1 µs integration time. The charge-photon interaction is quantified in the dispersive and resonant regimes by comparing the resonator response to input-output theory, yielding a coupling strength of g/2π = 49.7 MHz. Our results introduce cQED as a probe for quantum dots in van der Waals materials and indicate a path toward coherent charge-photon coupling with bilayer graphene quantum dots.

2.
Article in English | MEDLINE | ID: mdl-38815611

ABSTRACT

InSb, a narrow-band III-V semiconductor, is known for its small bandgap, small electron effective mass, high electron mobility, large effective $g$-factor, and strong spin-orbit interactions. These unique properties make InSb interesting for both industrial applications and quantum information processing. In this paper, we provide a review of recent progress in quantum transport research on InSb quantum well devices. With advancements in the growth of high-quality heterostructures and micro/nano fabrication, quantum transport experiments have been conducted on low-dimensional systems based on InSb quantum wells. Furthermore, ambipolar operations have been achieved in undoped InSb quantum wells, allowing for a systematic study of the band structure and quantum properties of p-type narrow-band semiconductors. Additionally, we introduce the latest research on InAsSb quantum wells as a continuation of exploring physics in semiconductors with even narrower bandgaps.

3.
Nat Commun ; 15(1): 390, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38195747

ABSTRACT

Magic-angle twisted bilayer graphene can host a variety of gate-tunable correlated states - including superconducting and correlated insulator states. Recently, junction-based superconducting moiré devices have been introduced, enabling the study of the charge, spin and orbital nature of superconductivity, as well as the coherence of moiré electrons in magic-angle twisted bilayer graphene. Complementary fundamental coherence effects-in particular, the Little-Parks effect in a superconducting ring and the Aharonov-Bohm effect in a normally conducting ring - have not yet been reported in moiré devices. Here, we observe both phenomena in a single gate-defined ring device, where we can embed a superconducting or normally conducting ring in a correlated or band insulator. The Little-Parks effect is seen in the superconducting phase diagram as a function of density and magnetic field, confirming the effective charge of 2e. We also find that the coherence length of conducting moiré electrons exceeds several microns at 50 mK. In addition, we identify a regime characterized by h/e-periodic oscillations but with superconductor-like nonlinear transport.

4.
Nano Lett ; 24(2): 601-606, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38180909

ABSTRACT

Electronic spectra of solids subjected to a magnetic field are often discussed in terms of Landau levels and Hofstadter-butterfly-style Brown-Zak minibands manifested by magneto-oscillations in two-dimensional electron systems. Here, we present the semiclassical precursors of these quantum magneto-oscillations which appear in graphene superlattices at low magnetic field near the Lifshitz transitions and persist at elevated temperatures. These oscillations originate from Aharonov-Bohm interference of electron waves following open trajectories that belong to a kagome-shaped network of paths characteristic for Lifshitz transitions in the moire superlattice minibands of twistronic graphenes.

5.
Nat Nanotechnol ; 17(11): 1159-1164, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36280761

ABSTRACT

Magic-angle twisted bilayer graphene (MATBG) hosts a number of correlated states of matter that can be tuned by electrostatic doping1-4. Transport5,6 and scanning-probe7-9 experiments have shown evidence for band, correlated and Chern insulators along with superconductivity. This variety of in situ tunable states has allowed for the realization of tunable Josephson junctions10-12. However, although phase-coherent phenomena have been measured10-12, no control of the phase difference of the superconducting condensates has been demonstrated so far. Here we build on previous gate-defined junction realizations and form a superconducting quantum interference device13 (SQUID) in MATBG, where the superconducting phase difference is controlled through the magnetic field. We observe magneto-oscillations of the critical current, demonstrating long-range coherence of superconducting charge carriers with an effective charge of 2e. We tune to both asymmetric and symmetric SQUID configurations by electrostatically controlling the critical currents through the junctions. This tunability allows us to study the inductances in the device, finding values of up to 2 µH. Furthermore, we directly probe the current-phase relation of one of the junctions of the device. Our results show that complex devices in MATBG can be realized and used to reveal the properties of the material. We envision our findings, together with the established history of applications SQUIDs have14-16, will foster the development of a wide range of devices such as phase-slip junctions17 or high kinetic inductance detectors18.

6.
Nano Lett ; 22(15): 6292-6297, 2022 Aug 10.
Article in English | MEDLINE | ID: mdl-35880910

ABSTRACT

We present an electron interferometer defined purely by electrostatic gating in an encapsulated bilayer graphene. This minimizes possible sample degradation introduced by conventional etching methods when preparing quantum devices. The device quality is demonstrated by observing Aharonov-Bohm (AB) oscillations with a period of h/e, h/2e, h/3e, and h/4e, witnessing a coherence length of many microns. The AB oscillations as well as the type of carriers (electrons or holes) are seamlessly tunable with gating. The coherence length longer than the ring perimeter and semiclassical trajectory of the carrier are established from the analysis of the temperature and magnetic field dependence of the oscillations. Our gate-defined ring geometry has the potential to evolve into a platform for exploring correlated quantum states such as superconductivity in interferometers in twisted bilayer graphene.

7.
Nano Lett ; 22(10): 4269-4275, 2022 May 25.
Article in English | MEDLINE | ID: mdl-35507698

ABSTRACT

Holes in germanium nanowires have emerged as a realistic platform for quantum computing based on spin qubit logic. On top of the large spin-orbit coupling that allows fast qubit operation, nanowire geometry and orientation can be tuned to cancel out charge noise and hyperfine interaction. Here, we demonstrate a scalable approach to synthesize and organize Ge nanowires on silicon (100)-oriented substrates. Germanium nanowire networks are obtained by selectively growing on nanopatterned slits in a metalorganic vapor phase epitaxy system. Low-temperature electronic transport measurements are performed on nanowire Hall bar devices revealing high hole doping of ∼1018 cm-3 and mean free path of ∼10 nm. Quantum diffusive transport phenomena, universal conductance fluctuations, and weak antilocalization are revealed through magneto transport measurements yielding a coherence and a spin-orbit length of the order of 100 and 10 nm, respectively.

8.
Phys Rev Lett ; 128(6): 067702, 2022 Feb 11.
Article in English | MEDLINE | ID: mdl-35213193

ABSTRACT

Pauli blockade mechanisms-whereby carrier transport through quantum dots (QD) is blocked due to selection rules even when energetically allowed-are a direct manifestation of the Pauli exclusion principle, as well as a key mechanism for manipulating and reading out spin qubits. The Pauli spin blockade is well established for systems such as GaAs QDs, but is to be further explored for systems with additional degrees of freedom, such as the valley quantum numbers in carbon-based materials or silicon. Here we report experiments on coupled bilayer graphene double quantum dots, in which the spin and valley states are precisely controlled, enabling the observation of the two-electron combined blockade physics. We demonstrate that the doubly occupied single dot switches between two different ground states with gate and magnetic-field tuning, allowing for the switching of selection rules: with a spin-triplet-valley-singlet ground state, valley blockade is observed; and with the spin-singlet-valley-triplet ground state, robust spin blockade is shown.

9.
Phys Rev Lett ; 128(5): 056802, 2022 Feb 04.
Article in English | MEDLINE | ID: mdl-35179909

ABSTRACT

The equilibration between quantum Hall edge modes is known to depend on the disorder potential and the steepness of the edge. Modern samples with higher mobilities and setups with lower electron temperatures call for a further exploration of the topic. We develop a framework to systematically measure and analyze the equilibration of many (up to 8) integer edge modes. Our results show that spin-selective coupling dominates even for non-neighboring channels with parallel spin. Changes in magnetic field and bulk density let us control the equilibration until it is almost completely suppressed and dominated only by individual microscopic scatterers. This method could serve as a guideline to investigate and design improved devices, and to study fractional and other exotic states.

10.
Phys Rev Lett ; 128(5): 057702, 2022 Feb 04.
Article in English | MEDLINE | ID: mdl-35179933

ABSTRACT

A unique feature of the complex band structures of moiré materials is the presence of minivalleys, their hybridization, and scattering between them. Here, we investigate magnetotransport oscillations caused by scattering between minivalleys-a phenomenon analogous to magnetointersubband oscillations-in a twisted double bilayer graphene sample with a twist angle of 1.94°. We study and discuss the potential scattering mechanisms and find an electron-phonon mechanism and valley conserving scattering to be likely. Finally, we discuss the relevance of our findings for different materials and twist angles.

11.
Nat Commun ; 12(1): 6004, 2021 Oct 14.
Article in English | MEDLINE | ID: mdl-34650056

ABSTRACT

The Kondo effect is a cornerstone in the study of strongly correlated fermions. The coherent exchange coupling of conduction electrons to local magnetic moments gives rise to a Kondo cloud that screens the impurity spin. Here we report on the interplay between spin-orbit interaction and the Kondo effect, that can lead to a underscreened Kondo effects in quantum dots in bilayer graphene. More generally, we introduce a different experimental platform for studying Kondo physics. In contrast to carbon nanotubes, where nanotube chirality determines spin-orbit coupling breaking the SU(4) symmetry of the electronic states relevant for the Kondo effect, we study a planar carbon material where a small spin-orbit coupling of nominally flat graphene is enhanced by zero-point out-of-plane phonons. The resulting two-electron triplet ground state in bilayer graphene dots provides a route to exploring the Kondo effect with a small spin-orbit interaction.

12.
Science ; 373(6560): 1257-1260, 2021 Sep 10.
Article in English | MEDLINE | ID: mdl-34516786

ABSTRACT

When twisted to angles near 1°, graphene multilayers provide a window on electron correlation physics. Here, we report the discovery of a correlated electron-hole state in double-bilayer graphene twisted to 2.37°. At this angle, the moiré states retain much of their isolated bilayer character, allowing their bilayer projections to be separately controlled by gates. We use this property to generate an energetic overlap between narrow isolated electron and hole bands with good nesting properties. Our measurements reveal the formation of ordered states with reconstructed Fermi surfaces, consistent with a density-wave state. This state can be tuned without introducing chemical dopants, enabling studies of correlated electron-hole states and their interplay with superconductivity.

13.
Phys Rev Lett ; 127(4): 046801, 2021 Jul 23.
Article in English | MEDLINE | ID: mdl-34355933

ABSTRACT

Graphene has evolved as a platform for quantum transport that can compete with the best and cleanest semiconductor systems. Here, we report on the observation of distinct electronic jets emanating from a narrow split-gate-defined channel in bilayer graphene. We find that these jets, which are visible via their interference patterns, occur predominantly with an angle of 60° between each other. This observation is related to the trigonal warping in the band structure of bilayer graphene, which, in conjunction with electron injection through a constriction, leads to a valley-dependent selection of momenta. This experimental observation of electron jetting has consequences for carrier transport in two-dimensional materials with a trigonally warped band structure in general, as well as for devices relying on ballistic and valley-selective transport.

14.
Sci Adv ; 7(19)2021 May.
Article in English | MEDLINE | ID: mdl-33962947

ABSTRACT

In the fractional quantum Hall effect, the elementary excitations are quasi-particles with fractional charges as predicted by theory and demonstrated by noise and interference experiments. We observe Coulomb blockade of fractional charges in the measured magneto-conductance of a 1.4-micron-wide quantum dot. Interaction-driven edge reconstruction separates the dot into concentric compressible regions with fractionally charged excitations and incompressible regions acting as tunnel barriers for quasi-particles. Our data show the formation of incompressible regions of filling factors 2/3 and 1/3. Comparing data at fractional filling factors to filling factor 2, we extract the fractional quasi-particle charge e */e = 0.32 ± 0.03 and 0.35 ± 0.05. Our investigations extend and complement quantum Hall Fabry-Pérot interference experiments investigating the nature of anyonic fractional quasi-particles.

15.
Nat Nanotechnol ; 16(7): 760-763, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33941917

ABSTRACT

In situ electrostatic control of two-dimensional superconductivity1 is commonly limited due to large charge carrier densities, and gate-defined Josephson junctions are therefore rare2,3. Magic-angle twisted bilayer graphene (MATBG)4-8 has recently emerged as a versatile platform that combines metallic, superconducting, magnetic and insulating phases in a single crystal9-14. Although MATBG appears to be an ideal two-dimensional platform for gate-tunable superconductivity9,11,13, progress towards practical implementations has been hindered by the need for well-defined gated regions. Here we use multilayer gate technology to create a device based on two distinct phases in adjustable regions of MATBG. We electrostatically define the superconducting and insulating regions of a Josephson junction and observe tunable d.c. and a.c. Josephson effects15,16. The ability to tune the superconducting state within a single material circumvents interface and fabrication challenges, which are common in multimaterial nanostructures. This work is an initial step towards devices where gate-defined correlated states are connected in single-crystal nanostructures. We envision applications in superconducting electronics17,18 and quantum information technology19,20.

16.
Nano Lett ; 21(2): 1068-1073, 2021 Jan 27.
Article in English | MEDLINE | ID: mdl-33449702

ABSTRACT

Quantum states in graphene are 2-fold degenerate in spins, and 2-fold in valleys. Both degrees of freedom can be utilized for qubit preparations. In our bilayer graphene quantum dots, we demonstrate that the valley g-factor gv, defined analogously to the spin g-factor gs for valley splitting in a perpendicular magnetic field, is tunable by over a factor of 4 from 20 to 90, by gate voltage adjustments only. Larger gv results from larger electronic dot sizes, determined from the charging energy. On our versatile device, bipolar operation, charging our quantum dot with charge carriers of the same or the opposite polarity as the leads, can be performed. Dots of both polarities are tunable to the first charge carrier, such that the transition from an electron to a hole dot by the action of the plunger gate can be observed. Addition of gates easily extends the system to host tunable double dots.

17.
Phys Rev Lett ; 125(17): 176801, 2020 Oct 23.
Article in English | MEDLINE | ID: mdl-33156662

ABSTRACT

Control over minivalley polarization and interlayer coupling is demonstrated in double bilayer graphene twisted with an angle of 2.37°. This intermediate angle is small enough for the minibands to form and large enough such that the charge carrier gases in the layers can be tuned independently. Using a dual-gated geometry we identify and control all possible combinations of minivalley polarization via the population of the two bilayers. An applied displacement field opens a band gap in either of the two bilayers, allowing us to even obtain full minivalley polarization. In addition, the carriers, formerly separated by their minivalley character, are mixed by tuning through a Lifshitz transition, where the Fermi surface topology changes. The high degree of control over the minivalley character of the bulk charge transport in twisted double bilayer graphene offers new opportunities for realizing valleytronics devices such as valley valves, filters, and logic gates.

18.
Phys Rev Lett ; 124(12): 126802, 2020 Mar 27.
Article in English | MEDLINE | ID: mdl-32281833

ABSTRACT

In multivalley semiconductors, the valley degree of freedom can be potentially used to store, manipulate, and read quantum information, but its control remains challenging. The valleys in bilayer graphene can be addressed by a perpendicular magnetic field which couples by the valley g factor g_{v}. However, control over g_{v} has not been demonstrated yet. We experimentally determine the energy spectrum of a quantum point contact realized by a suitable gate geometry in bilayer graphene. Using finite bias spectroscopy, we measure the energy scales arising from the lateral confinement as well as the Zeeman splitting and find a spin g factor g_{s}∼2. g_{v} can be tuned by a factor of 3 using vertical electric fields, g_{v}∼40-120. The results are quantitatively explained by a calculation considering topological magnetic moment and its dependence on confinement and the vertical displacement field.

19.
Sci Adv ; 6(11): eaay8409, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32201727

ABSTRACT

When two dimensional crystals are atomically close, their finite thickness becomes relevant. Using transport measurements, we investigate the electrostatics of two graphene layers, twisted by θ = 22° such that the layers are decoupled by the huge momentum mismatch between the K and K' points of the two layers. We observe a splitting of the zero-density lines of the two layers with increasing interlayer energy difference. This splitting is given by the ratio of single-layer quantum capacitance over interlayer capacitance C m and is therefore suited to extract C m. We explain the large observed value of C m by considering the finite dielectric thickness d g of each graphene layer and determine d g ≈ 2.6 Å. In a second experiment, we map out the entire density range with a Fabry-Pérot resonator. We can precisely measure the Fermi wavelength λ in each layer, showing that the layers are decoupled. Our findings are reproduced using tight-binding calculations.

20.
Nano Lett ; 19(12): 8821-8828, 2019 12 11.
Article in English | MEDLINE | ID: mdl-31670969

ABSTRACT

Crystal fields occur due to a potential difference between chemically different atomic species. In van der Waals heterostructures such fields are naturally present perpendicular to the planes. It has been realized recently that twisted graphene multilayers provide powerful playgrounds to engineer electronic properties by the number of layers, the twist angle, applied electric biases, electronic interactions, and elastic relaxations, but crystal fields have not received the attention they deserve. Here, we show that the band structure of large-angle twisted double bilayer graphene is strongly modified by crystal fields. In particular, we experimentally demonstrate that twisted double bilayer graphene, encapsulated between hBN layers, exhibits an intrinsic band gap. By the application of an external field, the gaps in the individual bilayers can be closed, allowing to determine the crystal fields. We find that crystal fields point from the outer to the inner layers with strengths in the bottom/top bilayer [Formula: see text] = 0.13 V/nm ≈ [Formula: see text] = 0.12 V/nm. We show both by means of first-principles calculations and low energy models that crystal fields open a band gap in the ground state. Our results put forward a physical scenario in which a crystal field effect in carbon substantially impacts the low energy properties of twisted double bilayer graphene, suggesting that such contributions must be taken into account in other regimes to faithfully predict the electronic properties of twisted graphene multilayers.

SELECTION OF CITATIONS
SEARCH DETAIL
...