Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Biomaterials ; 245: 119982, 2020 07.
Article in English | MEDLINE | ID: mdl-32224374

ABSTRACT

Tumor cell populations are highly heterogeneous, which limit the homogeneous distribution and optimal delivery of nanomedicines, thereby inducing insufficient therapeutic benefits. We develop tumor microenvironment activatable and external stimuli-responsive drug delivery system (TAT+AzoNPs), which can improve photodynamic therapy (PDT) induced bioreductive chemotherapy in different tumor cells both proximal and distal to vessels. The TAT peptide on the surface of TAT+AzoNPs can both facilitate the cell uptake and the penetration of TAT+AzoNPs, owing to its responsiveness to tumor stimuli pH. TAT+AzoNPs can keep the cargoes (photosensitizer chlorine e6 (Ce6) and hypoxia activatable prodrug tirapazamine (TPZ)) and highly accumulate within tumor cells proximity and distal to vessels. The Azo-benzene bonds as the linkers between amphiphilic polymers remain stable under normoxia, but quite break at hypoxic conditions. Upon external laser irradiation, the intratumoral fate of TAT+AzoNPs involved two processes: 1) TAT+AzoNPs achieve efficient PDT on tumor cells proximal to vessel, since sufficient O2 supply; and 2) PDT-induced more hypoxia can trigger TPZ release by breakage of Azo-benzene bond as well as accelerate the activation of TPZ for improvingcombination therapy efficacy in tumor cells distal to vessel. This study gives a direction for the development of stepwise-activatable hypoxia triggered nanosystem for PDT-induced bioreductive chemotherapy for tumor cells in different distances to vessels.


Subject(s)
Nanoparticles , Photochemotherapy , Cell Hypoxia , Cell Line, Tumor , Humans , Hypoxia/drug therapy , Photosensitizing Agents/therapeutic use , Tirapazamine
SELECTION OF CITATIONS
SEARCH DETAIL
...