Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Neurosci ; 16: 878495, 2022.
Article in English | MEDLINE | ID: mdl-36213750

ABSTRACT

Recent studies suggest that the maintenance of cognitive function in the later life of older people is an essential factor contributing to mental wellbeing and physical health. Particularly, the risk of depression, sleep disorders, and Alzheimer's disease significantly increases in patients with mild cognitive impairment. To develop early treatment and prevention strategies for cognitive decline, it is necessary to individually identify the current state of cognitive function since the progression of cognitive decline varies among individuals. Therefore, the development of biomarkers that allow easier measurement of cognitive function in older individuals is relevant for hyperaged societies. One of the methods used to estimate cognitive function focuses on the temporal complexity of electroencephalography (EEG) signals. The characteristics of temporal complexity depend on the time scale, which reflects the range of neuron functional interactions. To capture the dynamics, composed of multiple time scales, multiscale entropy (MSE) analysis is effective for comprehensively assessing the neural activity underlying cognitive function in the brain. Thus, we hypothesized that EEG complexity analysis could serve to assess a wide range of cognitive functions in older adults. To validate our hypothesis, we divided older participants into two groups based on their cognitive function test scores: a high cognitive function group and a low cognitive function group, and applied MSE analysis to the measured EEG data of all participants. The results of the repeated-measures analysis of covariance using age and sex as a covariate in the MSE profile showed a significant difference between the high and low cognitive function groups (F = 10.18, p = 0.003) and the interaction of the group × electrodes (F = 3.93, p = 0.002). Subsequently, the results of the post-hoc t-test showed high complexity on a slower time scale in the frontal, parietal, and temporal lobes in the high cognitive function group. This high complexity on a slow time scale reflects the activation of long-distance neural interactions among various brain regions to achieve high cognitive functions. This finding could facilitate the development of a tool for diagnosis of cognitive decline in older individuals.

2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 152-157, 2022 07.
Article in English | MEDLINE | ID: mdl-36085992

ABSTRACT

In recent years, as a treatment for mental disorders in addition to drug treatment, a non-drug treatment called chronotherapy has been attracting attention. However, the achievement of optimized chronotherapy for each subject's condition requires that the disturbance of the patient's circadian rhythm must be captured over a long duration. Therefore, it is necessary to develop biomarkers that are easy to measure, quantitative, and continuously measured. Complexity analysis of electroencephalograms revealed specific patterns related to circadian rhythms. However, such complexity analysis cannot capture variability in spatial patterns, although moment-to-moment temporal dynamic characteristics can be captured. Therefore, it is necessary to evaluate the dynamic characteristics of the interaction of neural activity throughout the brain. To evaluate the dynamic whole-brain interaction, we proposed a new microstate approach based on the instantaneous frequency distribution. In this context, we hypothesized that it would be possible to detect circadian rhythms using the microstate approach. In this study, to clarify the dynamic interactions of the entire neural network of the brain by circadian rhythms, we measured EEG data at day and night, and detected dynamic state transitions based on the instantaneous frequency distribution of the whole brain from EEG. The results showed the probability of transition among region-specific phase-leading states related to circadian rhythms. This finding might be widely utilized to detect circadian rhythms in healthy and pathological conditions.


Subject(s)
Brain , Circadian Rhythm , Chronotherapy , Electroencephalography/methods , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...