Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Nat Commun ; 13(1): 767, 2022 02 09.
Article in English | MEDLINE | ID: mdl-35140215

ABSTRACT

A major rate-limiting step in developing more effective immunotherapies for GBM is our inadequate understanding of the cellular complexity and the molecular heterogeneity of immune infiltrates in gliomas. Here, we report an integrated analysis of 201,986 human glioma, immune, and other stromal cells at the single cell level. In doing so, we discover extensive spatial and molecular heterogeneity in immune infiltrates. We identify molecular signatures for nine distinct myeloid cell subtypes, of which five are independent prognostic indicators of glioma patient survival. Furthermore, we identify S100A4 as a regulator of immune suppressive T and myeloid cells in GBM and demonstrate that deleting S100a4 in non-cancer cells is sufficient to reprogram the immune landscape and significantly improve survival. This study provides insights into spatial, molecular, and functional heterogeneity of glioma and glioma-associated immune cells and demonstrates the utility of this dataset for discovering therapeutic targets for this poorly immunogenic cancer.


Subject(s)
Immunotherapy , S100 Calcium-Binding Protein A4/isolation & purification , Single-Cell Analysis/methods , Animals , Brain Neoplasms/immunology , Female , Glioma/immunology , Humans , Male , Mice , Mice, Inbred C57BL , Myeloid Cells , Prognosis , S100 Calcium-Binding Protein A4/genetics , Tumor Microenvironment/immunology
2.
Neuro Oncol ; 24(4): 556-568, 2022 04 01.
Article in English | MEDLINE | ID: mdl-34515312

ABSTRACT

BACKGROUND: We postulate that meningiomas undergo distinct metabolic reprogramming in tumorigenesis and unraveling their metabolic phenotypes provide new therapeutic insights. Glutamine catabolism is key to the growth and proliferation of tumors. Here, we investigated the metabolomics of freshly resected meningiomas and glutamine metabolism in patient-derived meningioma cells. METHODS: 1H NMR spectroscopy of tumor tissues from meningioma patients was used to differentiate the metabolite profiles of grade-I and grade-II meningiomas. Glutamine metabolism was examined using 13C/15N glutamine tracer, in 5 patient-derived meningioma cells. RESULTS: Alanine, lactate, glutamate, glutamine, and glycine were predominantly elevated only in grade-II meningiomas by 74%, 76%, 35%, 75%, and 33%, respectively, with alanine and glutamine levels being statistically significant (P ≤ .02). 13C/15N glutamine tracer experiments revealed that both grade-I and -II meningiomas actively metabolize glutamine to generate various key carbon intermediates including alanine and proline that are necessary for the tumor growth. Also, it is shown that glutaminase (GLS1) inhibitor, CB-839 is highly effective in downregulating glutamine metabolism and decreasing proliferation in meningioma cells. CONCLUSION: Alanine and glutamine/glutamate are mainly elevated in grade-II meningiomas. Grade-I meningiomas possess relatively higher glutamine metabolism providing carbon/nitrogen for the biosynthesis of key nonessential amino acids. GLS1 inhibitor (CB-839) is very effective in downregulating glutamine metabolic pathways in grade-I meningiomas leading to decreased cellular proliferation.


Subject(s)
Meningeal Neoplasms , Meningioma , Amino Acids , Child , Glutamic Acid/metabolism , Glutamine/metabolism , Humans , Magnetic Resonance Spectroscopy/methods , Meningeal Neoplasms/metabolism , Meningioma/metabolism
3.
Front Oncol ; 11: 768758, 2021.
Article in English | MEDLINE | ID: mdl-34858847

ABSTRACT

Electromagnetic fields (EMF) raise intracellular levels of reactive oxygen species (ROS) that can be toxic to cancer cells. Because weak magnetic fields influence spin state pairing in redox-active radical electron pairs, we hypothesize that they disrupt electron flow in the mitochondrial electron transport chain (ETC). We tested this hypothesis by studying the effects of oscillating magnetic fields (sOMF) produced by a new noninvasive device involving permanent magnets spinning with specific frequency and timing patterns. We studied the effects of sOMF on ETC by measuring the consumption of oxygen (O2) by isolated rat liver mitochondria, normal human astrocytes, and several patient derived brain tumor cells, and O2 generation/consumption by plant cells with an O2 electrode. We also investigated glucose metabolism in tumor cells using 1H and 13C nuclear magnetic resonance and assessed mitochondrial alterations leading to cell death by using fluorescence microscopy with MitoTracker™ and a fluorescent probe for Caspase 3 activation. We show that sOMF of appropriate field strength, frequency, and on/off profiles completely arrest electron transport in isolated, respiring, rat liver mitochondria and patient derived glioblastoma (GBM), meningioma and diffuse intrinsic pontine glioma (DIPG) cells and can induce loss of mitochondrial integrity. These changes correlate with a decrease in mitochondrial carbon flux in cancer cells and with cancer cell death even in the non-dividing phase of the cell cycle. Our findings suggest that rotating magnetic fields could be therapeutically efficacious in brain cancers such as GBM and DIPG through selective disruption of the electron flow in immobile ETC complexes.

4.
J Cancer Res Clin Oncol ; 147(12): 3577-3589, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34477946

ABSTRACT

PURPOSE: The mechanisms underlying anticancer effects of electromagnetic fields are poorly understood. An alternating electric field-generating therapeutic device called Optune™ device has been approved for the treatment of glioblastoma (GBM). We have developed a new device that generates oscillating magnetic fields (OMF) by rapid rotation of strong permanent magnets in specially designed patterns of frequency and timing and have used it to treat an end-stage recurrent GBM patient under an expanded access/compassionate use treatment protocol. Here, we ask whether OMF causes selective cytotoxic effects in GBM and whether it is through generation of reactive oxygen species (ROS). METHODS: We stimulated patient derived GBM cells, lung cancer cells, normal human cortical neurons, astrocytes, and bronchial epithelial cells using OMF generators (oncoscillators) of our Oncomagnetic Device and compared the results to those obtained under unstimulated or sham-stimulated control conditions. Quantitative fluorescence microscopy was used to assess cell morphology, viability, and ROS production mechanisms. RESULTS: We find that OMF induces highly selective cell death of patient derived GBM cells associated with activation of caspase 3, while leaving normal tissue cells undamaged. The cytotoxic effect of OMF is also seen in pulmonary cancer cells. The underlying mechanism is a marked increase in ROS in the mitochondria, possibly in part through perturbation of the electron flow in the respiratory chain. CONCLUSION: Rotating magnetic fields produced by a new noninvasive device selectively kill cultured human glioblastoma and non-small cell lung cancer cells by raising intracellular reactive oxygen species, but not normal human tissue cells.


Subject(s)
Brain Neoplasms , Glioblastoma , Magnetic Field Therapy/methods , Cell Death , Humans , Tumor Cells, Cultured
5.
Cancers (Basel) ; 13(8)2021 Apr 10.
Article in English | MEDLINE | ID: mdl-33920278

ABSTRACT

BACKGROUND: Glioblastoma (GBM) can use metabolic fuels other than glucose (Glc). The ability of GBM to use galactose (Gal) as a fuel via the Leloir pathway is investigated. METHODS: Gene transcript data were accessed to determine the association between expression of genes of the Leloir pathway and patient outcomes. Growth studies were performed on five primary patient-derived GBM cultures using Glc-free media supplemented with Gal. The role of Glut3/Glut14 in sugar import was investigated using antibody inhibition of hexose transport. A specific inhibitor of GALK1 (Cpd36) was used to inhibit Gal catabolism. Gal metabolism was examined using proton, carbon and phosphorous NMR spectroscopy, with 13C-labeled Glc and Gal as tracers. RESULTS: Data analysis from published databases revealed that elevated levels of mRNA transcripts of SLC2A3 (Glut3), SLC2A14 (Glut14) and key Leloir pathway enzymes correlate with poor patient outcomes. GBM cultures proliferated when grown solely on Gal in Glc-free media and switching Glc-grown GBM cells into Gal-enriched/Glc-free media produced elevated levels of Glut3 and/or Glut14 enzymes. The 13C NMR-based metabolic flux analysis demonstrated a fully functional Leloir pathway and elevated pentose phosphate pathway activity for efficient Gal metabolism in GBM cells. CONCLUSION: Expression of Glut3 and/or Glut14 together with the enzymes of the Leloir pathway allows GBM to transport and metabolize Gal at physiological glucose concentrations, providing GBM cells with an alternate energy source. The presence of this pathway in GBM and its selective targeting may provide new treatment strategies.

6.
Cancers (Basel) ; 12(2)2020 Feb 04.
Article in English | MEDLINE | ID: mdl-32033192

ABSTRACT

BACKGROUND: Rathke's Cleft Cysts (RCCs) are rare epithelial cysts arising from remnants of the Rathke pouch in the pituitary gland. A subset of these lesions enlarge and produce a mass effect with consequent hypopituitarism, and may result in visual loss. Moreover, some RCCs with a high intra-cystic protein content may mimic cystic pituitary adenoma, which makes their differential diagnosis ambiguous. Currently, medical professionals have no definitive way to distinguish RCCs from pituitary adenomas. Therefore, preoperative confirmation of RCCs would be of help to medical professionals for the management and proper surgical decision making. The goal of this study is to identify molecular markers in RCCs. METHODS: We characterized aqueous and chloroform extracts of surgically resected RCCs and pituitary adenomas using ex vivo 1H NMR spectroscopy. RESULTS: All RCCs exclusively showed the presence of mucopolysaccharides which are glycosaminoglycans (GAGs) made up of disaccharides of aminosugars and uronic sugars. CONCLUSION: GAGs can be used as metabolite marker for the detection of RCCs and this knowledge will lay the groundwork for the development of a non-invasive, in vivo magnetic resonance spectroscopy methodology for the differential diagnosis of RCCs and pituitary adenomas using clinical MRI scanners.

7.
Sci Rep ; 10(1): 1334, 2020 Jan 28.
Article in English | MEDLINE | ID: mdl-31992791

ABSTRACT

The diagnosis of various histological subtypes of pituitary tumors is made using serum based hormone panel test. However, certain subtypes secrete more than one hormone, making the diagnosis ambiguous. Here, we performed 1H-NMR based metabolomic analysis of serum and whole-blood from luteinizing/follicle-stimulating (LH/FSH)-secreting (n = 24), prolactinomas (n = 14), and non-functional (NF) (n = 9) tumors. We found elevated levels of betahydroxybutyrate (BHB) in serum and whole-blood (WB) of prolactinomas (0.481 ± 0.211/0.329 ± 0.228 mM in serum/WB), but it was statistically significant (p ≤ 0.0033, Bonferroni correction) only in serum when compared with LH/FSH-secreting tumor patients (0.269 ± 0.139/0.167 ± 0.113 mM in serum/WB). Phenylalanine in NF tumors was found to be elevated in both serum and WB when compared with prolactinomas but it met the statistical significance criteria (p ≤ 0.0028) only in the serum. Alanine (p ≤ 0.011), tyrosine (p ≤ 0.014) and formate (p ≤ 0.011) were also elevated in NF tumors but none showed statistically significance when compared with prolactinomas. Quantification of BHB and the above amino acids in the circulation may aid in the development of blood-based in vitro diagnostic methods which can supplement the currently used serum hormone panel in the diagnosis of various subtypes of pituitary tumors.


Subject(s)
3-Hydroxybutyric Acid/blood , Pituitary Neoplasms/blood , Pituitary Neoplasms/diagnosis , Prolactinoma/blood , Prolactinoma/diagnosis , Adult , Aged , Aged, 80 and over , Biomarkers , Diagnosis, Differential , Female , Humans , Immunohistochemistry , Magnetic Resonance Spectroscopy , Male , Middle Aged , ROC Curve
8.
Methods Mol Biol ; 2037: 215-229, 2019.
Article in English | MEDLINE | ID: mdl-31463848

ABSTRACT

The field of metabolomics has been growing tremendously over the recent years and, consistent with that growth, a number of investigators have been looking at the potential of NMR-based urinary metabolomics for several applications. While such applications have shown promising results, there still remains an enormous amount of work to be done before this approach becomes accepted and widely used in clinical diagnostics and other biomedical applications. To achieve such goals, optimization of parameters and standardization of protocols are of paramount importance. In view of this, in this chapter, we present some recommended methods and procedures that can help researchers in the field. Furthermore, we have highlighted some of the challenges encountered in such applications and suggested some possible ways to overcome those challenges.


Subject(s)
Magnetic Resonance Spectroscopy/methods , Metabolomics/methods , Urinalysis/methods , Urinalysis/standards , Urinary Tract/metabolism , Humans
9.
Sci Rep ; 9(1): 3007, 2019 02 28.
Article in English | MEDLINE | ID: mdl-30816132

ABSTRACT

Pituitary adenomas (PAs) are benign growths arising from epithelial cells in the adenohypophysis of the pituitary gland. To date, there has been no detailed metabolic characterization of PAs of various subtypes. In this study, we report nuclear magnetic resonance (NMR) based metabolomic analysis of surgically resected tumors from forty five pituitary tumor patients [gonadotropic (LH/FSH-secreting) = 17; prolactinomas (PRL-secreting) = 11, Cushing's disease (ACTH-secreting) = 4, non-functional = 5, and mixed = 8] who underwent transsphenoidal selective adenomectomy. Compared to LH/FSH-secreting tumors, PRL-secreting tumors showed statistically significant decrease in the levels of N-acetylaspartate (NAA), myo-inositol (mI), scyllo-inositol (sI), glycine, taurine, phosphoethanolamine (PE) and increase in the levels of glutamine. When compared with LH/FSH-secreting tumors, ACTH-secreting tumors showed statistically significant decrease in the levels of sI, glycine, PE and increase in the levels of aspartate. Although lipid extracts of PAs showed the presence of many common lipid molecules, only glycerophosphoethanolamine (GPE) showed statistically significant decrease in PRL, ACTH and non-functional subtypes when compared to LH/FSH-secreting tumors. Changes observed in these metabolite concentrations among various subtypes of PAs reflect metabolic heterogeneity in these tumors and may pave the way towards the development of metabolic markers to distinguish various immunohistochemical subtypes of PAs.


Subject(s)
Pituitary Neoplasms/classification , Proton Magnetic Resonance Spectroscopy/methods , Adolescent , Adult , Aged , Aged, 80 and over , Aspartic Acid/analogs & derivatives , Aspartic Acid/metabolism , Ethanolamines/metabolism , Female , Glutamine/metabolism , Glycine/metabolism , Humans , Inositol/metabolism , Male , Middle Aged , Phosphatidylethanolamines/metabolism , Pituitary Neoplasms/diagnosis , Pituitary Neoplasms/metabolism , Taurine/metabolism
10.
NMR Biomed ; 32(5): e4065, 2019 05.
Article in English | MEDLINE | ID: mdl-30735273

ABSTRACT

Primary sclerosing cholangitis (PSC) has been considered to be either an "autoimmune disease" or a "bile acid-induced injury." In vitro MRS studies on PSC patients have limitations due to the contamination of bile with contrast agent (commonly administered during endoscopic retrograde cholangiopancreatography) and/or the use of patient cohorts with other diseases as controls. The objective of this study was to quantify biliary metabolites using in vivo 1 H MRS and gain insight into the pathogenesis of PSC. Biliary metabolites in 10 PSC patients and 14 healthy controls were quantified in vivo using 1 H MRS on a 3 T MR scanner. The concentrations of total bile acids plus cholesterol, glycine-conjugated bile acids, taurine-conjugated bile acids, and choline-containing phospholipids (chol-PLs) were compared between the two groups. There were statistically significant decreases in the levels of the above mentioned biliary metabolites in the PSC patients compared with controls. The reduction in bile acid secretion in bile of PSC patients indicates accumulation of bile acids in hepatocytes. Moreover, reduction in the levels of chol-PLs in bile may increase the toxic effects of bile acids. Our findings suggest that the bile duct injury in PSC patients is most likely due to "bile acid-induced injury."


Subject(s)
Bile Acids and Salts/metabolism , Cholangitis, Sclerosing/immunology , Cholangitis, Sclerosing/physiopathology , Gallbladder/diagnostic imaging , Gallbladder/injuries , Proton Magnetic Resonance Spectroscopy , Adult , Female , Humans , Male , Metabolome , Middle Aged , Young Adult
11.
Anal Biochem ; 552: 110-117, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29654744

ABSTRACT

Earlier studies on glucose metabolism in B-cells suggested an active TCA cycle in both naïve B cells and differentiated IgA plasma cells. Glycolysis was shown to be more active in IgA plasma cells than naïve B-cells. There have been no reports on the metabolism of fructose in B-cells. Fructose is a major sugar present in the western diet. Thus, we have investigated the metabolism of fructose in B-cells including the effect of glucose on the metabolism of fructose. In this study, using 13C NMR spectroscopy and [U-13C]fructose and [U-13C]glucose as stable 13C isotope tracers, we investigated the metabolic fate of fructose and glucose in B-cells. B-cells showed mitochondrial oxidation of fructose when administered alone, but showed diminished oxidation of fructose in the presence of glucose. On the other hand, fructose did not significantly affect the mitochondrial metabolism of glucose.


Subject(s)
B-Lymphocytes/metabolism , Fructose/metabolism , Carbon-13 Magnetic Resonance Spectroscopy , Cells, Cultured , Glutamic Acid/metabolism , Humans , Lactates/metabolism , Mitochondria/metabolism
12.
FEBS Lett ; 591(21): 3548-3554, 2017 11.
Article in English | MEDLINE | ID: mdl-28963851

ABSTRACT

Malignant brain tumors are known to utilize acetate as an alternate carbon source in the citric acid cycle for their bioenergetics. 13 C NMR-based isotopomer analysis has been used to measure turnover of 13 C-acetate carbons into glutamate and glutamine pools in tumors. Plasma from the patients infused with [1,2-13 C]acetate further revealed the presence of 13 C isotopomers of glutamine, glucose, and lactate in the circulation that were generated due to metabolism of [1,2-13 C]acetate by peripheral organs. In the tumor cells, [4-13 C] and [3,4-13 C]glutamate and glutamine isotopomers were generated from blood-borne 13 C-labeled glucose and lactate which were formed due to [1,2-13 C[acetate metabolism of peripheral tissues. [4,5-13 C] and [3,4,5-13 C]glutamate and glutamine isotopomers were produced from [1,2-13 C]acetyl-CoA that was derived from direct oxidation of [1,2-13 C] acetate in the tumor. Major portion of C4 13 C fractional enrichment of glutamate (93.3 ± 0.02%) and glutamine (90.9 ± 0.03%) were derived from [1,2-13 C]acetate-derived acetyl-CoA.


Subject(s)
Brain Neoplasms/metabolism , Glutamic Acid/metabolism , Glutamine/metabolism , Acetates/administration & dosage , Acetates/pharmacokinetics , Brain Neoplasms/diagnostic imaging , Carbon Isotopes/pharmacokinetics , Female , Humans , Male
13.
Magn Reson Insights ; 10: 1178623X17694346, 2017.
Article in English | MEDLINE | ID: mdl-28579794

ABSTRACT

Metabolomics is a rapidly growing field with potential applications in various disciplines. In particular, metabolomics has received special attention in the discovery of biomarkers and diagnostics. This is largely due to the fact that metabolomics provides critical information related to the downstream products of many cellular and metabolic processes which could provide a snapshot of the health/disease status of a particular tissue or organ. Many of these cellular products eventually find their way to urine; hence, analysis of urine via metabolomics has the potential to yield useful diagnostic and prognostic information. Although there are a number of analytical platforms that can be used for this purpose, this review article will focus on nuclear magnetic resonance-based metabolomics. Furthermore, although there have been many studies addressing different diseases and metabolic disorders, the focus of this review article will be in the following specific applications: urinary tract infection, kidney transplant rejection, diabetes, some types of cancer, and inborn errors of metabolism. A number of methodological considerations that need to be taken into account for the development of a clinically useful optimal test are discussed briefly.

14.
Magn Reson Insights ; 9: 29-35, 2016.
Article in English | MEDLINE | ID: mdl-27891048

ABSTRACT

OBJECTIVES: Lung cancer is one of the most lethal cancers. Currently, there are no biomarkers for early detection, monitoring treatment response, and detecting recurrent lung cancer. We undertook this study to determine if 1H magnetic resonance spectroscopy (MRS) of sputum and exhaled breath condensate (EBC), as a noninvasive tool, can identify metabolic biomarkers of lung cancer. MATERIALS AND METHODS: Sputum and EBC samples were collected from 20 patients, comprising patients with pathologically confirmed non-small cell lung cancer (n = 10) and patients with benign respiratory conditions (n = 10). Both sputum and EBC samples were collected from 18 patients; 2 patients provided EBC samples only. 1H MR spectra were obtained on a Bruker Avance 400 MHz nuclear magnetic resonance (NMR) spectrometer. Sputum samples were further confirmed cytologically to distinguish between true sputum and saliva. RESULTS: In the EBC samples, median concentrations of propionate, ethanol, acetate, and acetone were higher in lung cancer patients compared to the patients with benign conditions. Median concentration of methanol was lower in lung cancer patients (0.028 mM) than in patients with benign conditions (0.067 mM; P = 0.028). In the combined sputum and saliva and the cytologically confirmed sputum samples, median concentrations of N-acetyl sugars, glycoprotein, propionate, lysine, acetate, and formate were lower in the lung cancer patients than in patients with benign conditions. Glucose was found to be consistently absent in the combined sputum and saliva samples (88%) as well as in the cytologically confirmed sputum samples (86%) of lung cancer patients. CONCLUSION: Absence of glucose in sputum and lower concentrations of methanol in EBC of lung cancer patients discerned by 1H MRS may serve as metabolic biomarkers of lung cancer for early detection, monitoring treatment response, and detecting recurrence.

15.
Magn Reson Insights ; 7: 1-14, 2014.
Article in English | MEDLINE | ID: mdl-25114549

ABSTRACT

Metabolomics is a relatively new technique that is gaining importance very rapidly. MRS-based metabolomics, in particular, is becoming a useful tool in the study of body fluids, tissue biopsies and whole organisms. Advances in analytical techniques and data analysis methods have opened a new opportunity for such technology to contribute in the field of diagnostics. In the MRS approach to the diagnosis of disease, it is important that the analysis utilizes all the essential information in the spectra, is robust, and is non-subjective. Although some of the data analytic methods widely used in chemical and biological sciences are sketched, a more extensive discussion is given of a 5-stage Statistical Classification Strategy. This proposes powerful feature selection methods, based on, for example, genetic algorithms and novel projection techniques. The applications of MRS-based metabolomics in breast cancer, prostate cancer, colorectal cancer, pancreatic cancer, hepatobiliary cancers, gastric cancer, and brain cancer have been reviewed. While the majority of these applications relate to body fluids and tissue biopsies, some in vivo applications have also been included. It should be emphasized that the number of subjects studied must be sufficiently large to ensure a robust diagnostic classification. Before MRS-based metabolomics can become a widely used clinical tool, however, certain challenges need to be overcome. These include manufacturing user-friendly commercial instruments with all the essential features, and educating physicians and medical technologists in the acquisition, analysis, and interpretation of metabolomics data.

16.
NMR Biomed ; 27(10): 1192-202, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25132620

ABSTRACT

In vitro (1)H MRS of human bile has shown potential in the diagnosis of various hepatopancreatobiliary (HPB) diseases. Previously, in vivo (1)H MRS of human bile in gallbladder using a 1.5 T scanner demonstrated the possibility of quantification of choline-containing phospholipids (chol-PLs). However, other lipid components such as bile acids play an important role in the pathophysiology of the HPB system. We have employed a higher magnetic field strength (3 T), and a custom-built receive array coil, to improve the quality of in vivo (1)H MRS of human bile in the gallbladder. We obtained significant improvement in the quality of 1D spectra (17 healthy volunteers) using a respiratory-gated PRESS sequence with well distinguished signals for total bile acids (TBAs) plus cholesterol resonating at 0.66 ppm, taurine-conjugated bile acids (TCBAs) at 3.08 ppm, chol-PLs at 3.22 ppm, glycine-conjugated bile acids (GCBAs) at 3.74 ppm, and the amide proton (-NH) arising from GCBAs and TCBAs in the region 7.76-8.05 ppm. The peak areas of these signals were measured by deconvolution, and subsequently the molar concentrations of metabolites were estimated with good accuracy, except for that of TBAs plus cholesterol. The concentration of TBAs plus cholesterol was overestimated in some cases, which could be due to lipid contamination. In addition, we report the first 2D L-COSY spectra of human gallbladder bile in vivo (obtained in 15 healthy volunteers). 2D L-COSY spectra will be helpful in differentiating various biliary chol-PLs in pathological conditions of the HPB system.


Subject(s)
Bile/chemistry , Gallbladder , Lipids/analysis , Nuclear Magnetic Resonance, Biomolecular/methods , Proton Magnetic Resonance Spectroscopy/methods , Adult , Bile Acids and Salts/analysis , Cholesterol/analysis , Choline/analysis , Female , Humans , Liver Function Tests , Male , Middle Aged , Phantoms, Imaging , Phospholipids/analysis , Proton Magnetic Resonance Spectroscopy/instrumentation , Taurine/analysis
18.
Lipids ; 45(9): 843-54, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20721632

ABSTRACT

People with inflammatory bowel disease (IBD) are at risk for developing colorectal cancer, and this risk increases at a rate of 1% per year after 8-10 years of having the disease. Saturated and omega-6 polyunsaturated fatty acids (PUFAs) have been implicated in its causation. Conversely, omega-3 PUFAs may have the potential to confer therapeutic benefit. Since proton magnetic resonance spectroscopy ((1)H MRS) combined with pattern recognition methods could be a valuable adjunct to histology, the objective of this study was to analyze the potential of (1)H MRS in assessing the effect of dietary fatty acids on colonic inflammation. Forty male Sprague-Dawley rats were administered one of the following dietary regimens for 2 weeks: low-fat corn oil (omega-6), high-fat corn oil (omega-6), high-fat flaxseed oil (omega-3) or high-fat beef tallow (saturated fatty acids). Half of the animals were fed 2% carrageenan to induce colonic inflammation similar to IBD. (1)H MRS and histology were performed on ex vivo colonic samples, and the (1)H MR spectra were analyzed using a statistical classification strategy (SCS). The histological and/or MRS studies revealed that different dietary fatty acids modulate colonic inflammation differently, with high-fat corn oil being the most inflammatory and high-fat flaxseed oil the least inflammatory. (1)H MRS is capable of identifying the biochemical changes in the colonic tissue as a result of inflammation, and when combined with SCS, this technique accurately differentiated the inflamed colonic mucosa based on the severity of the inflammation. This indicates that MRS could serve as a valuable adjunct to histology in accurately assessing colonic inflammation. Our data also suggest that both the type and the amount of fatty acids in the diet are critical in modulating IBD.


Subject(s)
Colitis/metabolism , Dietary Fats, Unsaturated/pharmacology , Inflammatory Bowel Diseases/metabolism , Magnetic Resonance Spectroscopy/methods , Animals , Colitis/pathology , Colon/drug effects , Colon/metabolism , Colon/pathology , Corn Oil/administration & dosage , Corn Oil/pharmacology , Dietary Fats, Unsaturated/administration & dosage , Fatty Acids, Omega-3/administration & dosage , Fatty Acids, Omega-3/pharmacology , Fatty Acids, Omega-6/administration & dosage , Fatty Acids, Omega-6/pharmacology , Inflammatory Bowel Diseases/pathology , Male , Rats , Rats, Sprague-Dawley
19.
J Pharm Biomed Anal ; 53(3): 667-73, 2010 Nov 02.
Article in English | MEDLINE | ID: mdl-20580511

ABSTRACT

Bile acids, phospholipids, and cholesterol are the major lipid components in human bile. The composition of bile is altered in various cholestatic diseases, and determining such alterations will be of great clinical importance in understanding the pathophysiology of these diseases. A robust method for the simultaneous quantification of major biliary lipids--glycine-conjugated bile acids (GCBAs), taurine-conjugated bile acids (TCBAs), total bile acids (TBAs) and choline-containing phospholipids (choline-PLs) has been devised using (1)H NMR spectroscopy. Bile samples were obtained from patients with various hepatopancreatobiliary diseases (n=10) during an endoscopic retrograde cholangiopancreatography (ERCP) examination. Peak areas of metabolite-signals of interest were obtained simultaneously by deconvoluting the experimental spectrum, making the present method robust. GCBAs and TCBAs have been quantified using the peak areas of their characteristic methylene (CH(2)) signals resonating at 3.73 and 3.07 ppm, whereas TBA and choline-PLs were quantified using their methyl (CH(3)) and trimethylammonium (-N(+)(CH(3))(3)) signals resonating at 0.65 and 3.22 ppm respectively. The present method was compared with an NMR-based literature method (which involves dissolving bile in DMSO), and a good correlation was observed between the two methods with regression coefficients - 0.97, 0.99, 0.98 and 0.93 for GCBAs, TCBAs, TBAs, and choline-PLs respectively. This method has the potential to be extended to in vivo applications for the simultaneous quantification of various biliary lipids non-invasively.


Subject(s)
Bile Acids and Salts/analysis , Bile/chemistry , Choline/analysis , Magnetic Resonance Spectroscopy/methods , Phospholipids/analysis , Cholesterol/analysis , Glycine/analysis , Humans , Taurine/analysis
20.
MAGMA ; 22(5): 267-75, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19390887

ABSTRACT

OBJECTIVE: There are no specific biomarkers available for the definitive diagnosis of pancreatic cancer. Analysis of D-glucuronic acid (GlcUA) in bile could be valuable in this regard. MATERIALS AND METHODS: Bile samples obtained from patients with pancreatic cancer (n = 4), chronic pancreatitis (n = 3) and control patients with biliary obstruction (n = 10) were analyzed by (1)H NMR spectroscopy. GlcUA was quantified from the peak area of the alpha-(1)CH signal (at 5.24 ppm) obtained by deconvolution. RESULTS: GlcUA was detected in human bile by one-dimensional (1)H NMR and two-dimensional (1)H-(1)H COSY and TOCSY experiments. Quantification of GlcUA was achieved by measuring the peak area of the alpha-(1)CH signal using CPMG experiment, and the quantities of GlcUA were calibrated to account for the attenuation due to T (2) relaxation. GlcUA was observed at elevated levels in bile samples obtained from pancreatic cancer patients, whereas it was either absent or found in negligible amounts in control and chronic pancreatitis patients. The reason for the presence of elevated levels of GlcUA could be the hydrolysis of biliary bilirubin diglucuronide by beta-glucuronidase, released excessively from pancreatic tissue during the course of malignancy. CONCLUSION: Analysis of D-glucuronic acid in bile could be valuable in the detection of pancreatic cancer, and detecting GlcUA by in vivo (1)H MRS has the potential to help in the non-invasive diagnosis of pancreatic cancer. Given that only four cancer patients have been studied so far, the new biomarker is regarded as a preliminary finding, but one that warrants further investigation.


Subject(s)
Bile/chemistry , Glucuronic Acid/analysis , Pancreatic Neoplasms/diagnosis , Pancreatic Neoplasms/metabolism , Adult , Aged , Aged, 80 and over , Bile/metabolism , Biliary Tract Diseases/diagnosis , Biliary Tract Diseases/metabolism , Bilirubin/analogs & derivatives , Bilirubin/metabolism , Biomarkers/chemistry , Biomarkers/metabolism , Case-Control Studies , Female , Glucuronic Acid/metabolism , Glucuronidase/metabolism , Humans , Magnetic Resonance Spectroscopy , Male , Middle Aged , Pancreas/metabolism , Pancreas/pathology , Pancreatitis, Chronic/diagnosis , Pancreatitis, Chronic/metabolism , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...