Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Antioxidants (Basel) ; 10(8)2021 Jul 29.
Article in English | MEDLINE | ID: mdl-34439466

ABSTRACT

Tartary buckwheat is used as an ingredient in flour and tea, as well as in traditional Chinese medicine for its antioxidant effects. Here, we found that an ethanol extract of tartary buckwheat (TBE) potently induced autophagy flux in HeLa cells by suppressing mTORC1 activity, as revealed by dephosphorylation of the mTORC1 substrates Ulk1, S6K, and 4EBP, as well as by the nuclear translocation of transcriptional factor EB. In addition to non-selective bulk autophagy, TBE also induced aggrephagy, which is defined as autophagy against aggregated proteins. Quercetin is a flavonol found at high levels in TBE. We showed that quercetin induced both non-selective bulk autophagy and aggrephagy. These effects were also observed in Huh-7 cells derived from hepatocytes. Thus, aggrephagy induction by TBE and quercetin may relieve alcoholic hepatitis, which is closely linked to the accumulation of protein aggregations called Mallory-Denk bodies.

2.
PLoS One ; 15(3): e0230156, 2020.
Article in English | MEDLINE | ID: mdl-32134989

ABSTRACT

Kampo, a system of traditional Japanese therapy utilizing mixtures of herbal medicine, is widely accepted in the Japanese medical system. Kampo originated from traditional Chinese medicine, and was gradually adopted into a Japanese style. Although its effects on a variety of diseases are appreciated, the underlying mechanisms remain mostly unclear. Using a quantitative tf-LC3 system, we conducted a high-throughput screen of 128 kinds of Kampo to evaluate the effects on autophagy. The results revealed a suppressive effect of Shigyakusan/TJ-35 on autophagic activity. TJ-35 specifically suppressed dephosphorylation of ULK1 and TFEB, among several TORC1 substrates, in response to nutrient deprivation. TFEB was dephosphorylated by calcineurin in a Ca2+ dependent manner. Cytosolic Ca2+ concentration was increased in response to nutrient starvation, and TJ-35 suppressed this increase. Thus, TJ-35 prevents the starvation-induced Ca2+ increase, thereby suppressing induction of autophagy.


Subject(s)
Autophagy/drug effects , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/drug effects , Drugs, Chinese Herbal/pharmacology , Animals , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Calcineurin/metabolism , Calcium/metabolism , Humans , Mechanistic Target of Rapamycin Complex 1/metabolism , Phosphorylation , Starvation/metabolism
3.
J Cell Sci ; 131(3)2018 01 29.
Article in English | MEDLINE | ID: mdl-29222112

ABSTRACT

In response to amino acid supply, mTORC1, a master regulator of cell growth, is recruited to the lysosome and activated by the small GTPase Rheb. However, the intracellular localization of Rheb is controversial. In this study, we showed that a significant portion of Rheb is localized on the Golgi but not on the lysosome. GFP-Rheb could activate mTORC1, even when forced to exclusively localize to the Golgi. Likewise, artificial recruitment of mTORC1 to the Golgi allowed its activation. Accordingly, the Golgi was in contact with the lysosome at an newly discovered area of the cell that we term the Golgi-lysosome contact site (GLCS). The number of GLCSs increased in response to amino acid supply, whereas GLCS perturbation suppressed mTORC1 activation. These results suggest that inter-organelle communication between the Golgi and lysosome is important for mTORC1 regulation and the Golgi-localized Rheb may activate mTORC1 at GLCSs.


Subject(s)
Golgi Apparatus/metabolism , Intracellular Membranes/metabolism , Lysosomes/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Ras Homolog Enriched in Brain Protein/metabolism , Amino Acids/pharmacology , Golgi Apparatus/drug effects , Green Fluorescent Proteins/metabolism , HEK293 Cells , HeLa Cells , Humans , Intracellular Membranes/drug effects , Lysosomes/drug effects , Protein Transport/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...