Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
1.
Physiol Behav ; 268: 114230, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37169121

ABSTRACT

The Djungarian hamster (Phodopus sungorus) shows calm behavior, while the Roborovskii hamster (P. roborovskii) exhibits hyperactivity. Even though they belong to the same genus, Phodopus, these two species are quite different. The current study investigated the relationship between energy expenditure and the markedly different levels of activity shown by these hamsters. Roborovskii hamsters showed significantly higher energy expenditure than Djungarian hamsters under both feeding and fasting conditions during darkness. Roborovskii hamsters showed a repeated increase and decrease in energy expenditure under the feeding condition; however, this changed under the fasting condition, during which the repeated increase and decrease in energy expenditure corresponded to the repeated active and sleeping conditions. Djungarian hamsters had a tendency to keep their energy expenditure constant during the fasting condition, while Roborovskii hamsters moved around a lot to find food. The respiratory quotient (RQ) values in Djungarian hamsters were relatively constant. However, Roborovskii hamsters showed a wide variation in RQ. In particular, the RQ value declined immediately before a dark phase commenced, indicating a switchover from the utilization of glucose to that of lipids as a substrate for energy production. In conclusion, Djungarian hamsters and Roborovskii hamsters showed different behavioral patterns that were related to differences in energy metabolism.


Subject(s)
Motor Activity , Phodopus , Cricetinae , Animals , Energy Metabolism
2.
Nutrients ; 15(2)2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36678234

ABSTRACT

This study aimed to investigate the effects of Brazilian propolis on body fat mass and levels of adiponectin and reactive oxygen species among community-dwelling elderly females. This was a double-blind randomized placebo-controlled trial. Altogether, 78 females aged 66-84 years were randomly assigned to the propolis (PRO; n = 39) or placebo (PLA; n = 39) group. For 12 weeks, the PRO group were given three capsules containing 227 mg of propolis twice a day. Meanwhile, the PLA group were given daily placebo capsules. Of 78 participants, 53 (PLA group: n = 28, PRO group: n = 25) completed the study. Although no changes were observed in absolute or relative fat mass in the PLA group, they showed a significant decline in the PRO group. The level of serum adiponectin in the PLA group did not change, although that of the PRO group significantly increased. The level of d-ROMs in the PLA group significantly increased, whereas that of the PRO group significantly decreased. The serum SOD activity in the PLA group significantly decreased, whereas that of the PRO group tended to increase. These results suggest that propolis supplementation may decrease body fat mass and oxidative stress among community-dwelling elderly females.


Subject(s)
Propolis , Aged , Female , Humans , Adiponectin , Adipose Tissue , Brazil , Dietary Supplements , Independent Living , Oxidative Stress , Polyesters , Propolis/pharmacology , Propolis/therapeutic use , Aged, 80 and over
3.
Molecules ; 28(1)2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36615219

ABSTRACT

This study targets the evaluation of melanin synthesis inhibition activity of the bamboo shoot skin as agro-waste. The total methanolic extract of bamboo peel extract was evaluated for its skin protective effects via measuring its melanin inhibitory activity and its suppression activity on the expression of tyrosinase mRNA levels. Results showed that bamboo peel extract has a good ability for the inhibition of melanin synthesis so further studies were performed for the isolation of its constituents. Twelve compounds have been isolated from the shoot skin of Phyllostachys pubescens. Their structures were elucidated based on extensive spectroscopic methods. The melanin inhibition potential of the isolates was tested with their collagen-production-promoting activity for the determination of active principles. Results showed that Betulinic acid, tachioside, and 1,2-dilinolenin significantly suppressed melanin production per cell compared to control. Triacontanol, tricin, and (+)-lyoniresinol 9'-O-glucoside also tended to decrease melanin production per cell. These findings indicated that the skin of bamboo shoots, a significant agricultural waste, is a useful natural source for further research on its potential for aging problems such hyperpigmentation and cognitive function impairment.


Subject(s)
Melanins , Poaceae , Melanins/metabolism , Poaceae/chemistry , Plant Extracts/chemistry , Glucosides/metabolism
4.
Microorganisms ; 9(8)2021 Aug 09.
Article in English | MEDLINE | ID: mdl-34442766

ABSTRACT

Gut eubiosis is essential for the host's health. In athletes, the gut microbiota can be altered by several factors, including diets. While eubiotic gut microbiota in elite rugby players has been reported, our survey found that university rugby players suffered from loose stools and frequent urgency to defecate. To establish the causes of the condition, the microbiota and the concentrations of organic acids in fecal samples of university male rugby players (URP) were analyzed and compared with those of age-matching, non-rugby playing males (control). Body mass indices were significantly (p < 0.05) different between groups. Chao1 index was significant (p < 0.05) lower in URP than in control. The relative abundances of phyla Firmicutes and Bacteroidetes were significantly (p < 0.05) higher and lower, respectively, in URP than in control. Potential pathobiont genera Collinsella, Enterobacter, and Haemophilus were significantly (p < 0.05) abundant, whereas beneficial Akkermansia was lower (p < 0.05) in URP than in control. Succinate, a potential causative of gut inflammation, was five-fold higher in URP than in controls. Our findings all but confirmed that the dysbiotic status of gut in URP.

5.
Anim Sci J ; 92(1): e13566, 2021.
Article in English | MEDLINE | ID: mdl-34170061

ABSTRACT

The live microbiota ecosystem in the intestine plays a critical role in maintaining the normal physiological and psychological functions in both animals and human beings. However, the chronic effect of microbiota disturbances during prenatal and neonatal developing periods on animal's health remains less studied. In the current study, pregnant ICR mice were fed with an antibiotic diet (7-g nebacitin [bacitracin-neomycin sulphate 2:1]/kg standard diet) from day 14 of conception, and their offspring were provided with the same diet till the termination of the experiments. Dams treated with antibiotics showed increased body weight along with enlarged gut. Antibiotic-treated offspring revealed decreased bodyweight, increased food, water, and sucrose intake. Administration of antibiotics affected corticosterone responsivity to acute 20 min restraint challenge in male pups. In behavior tests, female pups showed decreased movement in open field while male pups revealed decreased latency to open arms in elevated plus maze test and immobility time in tail suspension test. Together, these results suggested that early antibiotic exposure may impact on the food intake, body weight gain, and emotional behavior regulation in mice.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Animals , Animals, Newborn , Anti-Bacterial Agents/pharmacology , Body Weight , Female , Male , Mice , Mice, Inbred ICR , Pregnancy , Weight Gain
6.
J Nutr Metab ; 2021: 8824753, 2021.
Article in English | MEDLINE | ID: mdl-33728061

ABSTRACT

A critical factor for preventing osteoporosis after menopause is attenuation of the accelerated turnover rate of bone metabolism. The present randomized controlled study was conducted to clarify the effects of a lemon beverage with calcium (Ca) supplementation that makes use of the chelating action of citric acid. Comprehensive evaluations of bone were performed by assessments of bone mineral density (BMD) and biomarkers related to bone turnover. Seventy-nine postmenopausal women were enrolled and asked to participate in an 11-month continuous intake of the test beverages. The subjects were divided into three groups: those who consumed a lemon beverage containing citric acid with Ca supplementation (LECA group), those who consumed a lemon beverage containing citric acid without Ca supplementation (LE group), and those who consumed no test beverage (control group). Using a double-blind protocol, subjects in the LECA and LE groups consumed one bottle containing 290 mL of the test beverage each day. The ratio of change in BMD after 11 months was significantly higher in the LECA group as compared to the control and LE groups. The LECA group also showed significant decreases in concentrations of tartrate-resistant acid phosphatase 5b (TRACP-5b), a bone resorption marker, and bone alkaline phosphatase (BAP) as compared to the other groups, as well as a significant decrease in concentration of osteocalcin (OC), a bone formation marker, as compared to the LE group. Based on our findings, we speculated that bone resorption and bone formation in postmenopausal women might be suppressed along with an increase in Ca resorption caused by chelation of citric acid in association with continuous ingestion of a Ca-supplemented lemon beverage containing citric acid, resulting in suppression of high bone metabolic turnover. In addition, the results provide information regarding BMD maintenance in the bones of the trunk, including the lumbar spine and proximal femur.

7.
Stress ; 22(4): 482-491, 2019 07.
Article in English | MEDLINE | ID: mdl-30838897

ABSTRACT

Depression-like behavior during lactation may relate to changes in the hypothalamic-pituitary-adrenal (HPA) axis, brain monoamines, and brain amino acid metabolism. This study investigated how the behavior, HPA axis activity, brain monoamines, and brain free amino acid metabolism of rats were changed by stress or lactation period. Rats were separated into four groups: (1) control lactating (n = 6), (2) stress lactating (n = 6), (3) control virgin (n = 7), and (4) stress virgin (n = 7) and restrained for 30 min a total of ten times (once every other day) from postnatal day (PND) 1. Depression-like behavior in the forced swimming test (FST) on PND 10 and concentration of corticosterone in plasma, as well as monoamines and L-amino acids including ß-alanine, γ-aminobutyric acid, cystathionine, 3-methyl-histidine and taurine in the prefrontal cortex and hypothalamus on PND 19 were measured. The plasma corticosterone concentration, measured just after restraint stress, was significantly higher in the stress groups, versus the control groups, but there were no significant differences between control and stress lactating groups. Depression-like behavior (immobility) in the FST was significantly lower in the lactating groups, versus the virgin groups. Stress enhanced dopamine and glutamate, and decreased threonine and glycine concentrations in the hypothalamus. In addition, 3-methoxy-4-hydroxyphenylglycol (MHPG), threonine and ornithine concentrations in the prefrontal cortex were significantly higher in the lactating groups compared with the virgin groups. Changes in plasma corticosterone concentration, monoamine, and amino acid metabolism may relate to stress-induced depression-like behavior in lactating rats. Lay summary This study revealed that reduced depression-like behavior in lactating, relative to virgin rats, was associated with changes in monoamine and amino acid metabolism in the prefrontal cortex of the brain. In addition, the effect of stress on monoamine and amino acid metabolism is prominently observed in the hypothalamus and may be related to neuroendocrine stress axis activity and secretion of corticosterone. This study suggested that stress-induced depression-like behavior may be associated with several changes in the stress axis, brain monoamines, and brain amino acid metabolism. These parameters were associated with attenuated depression-like behavior in lactating rats.


Subject(s)
Amino Acids/metabolism , Depression/physiopathology , Hypothalamo-Hypophyseal System/metabolism , Lactation/physiology , Stress, Psychological/metabolism , Adrenocorticotropic Hormone/blood , Animals , Brain/metabolism , Catecholamines/metabolism , Corticosterone/blood , Depressive Disorder/metabolism , Female , Hypothalamus/metabolism , Male , Neurosecretory Systems/metabolism , Pituitary-Adrenal System/metabolism , Prefrontal Cortex/metabolism , Rats , Swimming
8.
J Poult Sci ; 56(1): 65-70, 2019 Jan 25.
Article in English | MEDLINE | ID: mdl-32055198

ABSTRACT

Heat stress is an increasing concern in poultry industry as it can cause a rise in the body temperature of chickens. Recently, we reported that l-citrulline (l-Cit) is a potential hypothermic agent that could improve thermotolerance in chicks. However, synthetic l-Cit has not yet been approved for inclusion in animal diets. l-Cit was first isolated from watermelon. Watermelon rind (WR), an agricultural waste product, contains more l-Cit than the flesh of the fruit. In the current study, the chemical composition and l-Cit content of WR dried powder (WRP) were determined. WRP was mixed with water at a ratio of 4:5 (wt/v) to make WRP mash, and then mixed with a commercial starter diet to prepare a 9% WRP mash diet. The WRP mash diet was fed to 3- to 15-day-old chicks and daily food intake, body weight, and changes in rectal temperature were measured. At the end of the experiment, blood was collected from the chicks to analyze plasma l-Cit and other free amino acids. The chemical analysis of WRP revealed a variety of components including 19.1% crude protein. l-Cit was the most abundant free amino acid in WRP (3.18 mg/g). Chronic supplementation of the WRP mash diet significantly increased compensatory food intake, plasma l-Cit, l-ornithine, and l-tyrosine in chicks. WRP mash diet did not affect the body temperature of the chicks. In conclusion, WRP mash diet supplementation increased plasma l-Cit concentration in chicks. The increase in plasma l-Cit concentrations suggest that WR could be used as a natural source of l-Cit in chicks to ameliorate the adverse effects of heat stress.

9.
J Vet Med Sci ; 80(3): 503-509, 2018 Mar 30.
Article in English | MEDLINE | ID: mdl-29367519

ABSTRACT

It is well known that maternal stress during the gestation and lactation periods induces abnormal behavior in the offspring and causes a lowering of the offspring's body weight. Various causes of maternal stress during the lactation period, relating to, for example, maternal nutritional status and reduced maternal care, have been considered. However, little is known about the effects on milk of maternal stress during the lactation period. The current study aimed to determine whether free amino acids, with special reference to sulfur-containing amino acids in milk, are altered by restraint stress in lactating mice. The dams in the stress group were restrained for 30 min at postnatal days 2, 4, 6, 8, 10 and 12. Restraint stress caused a reduction in the body weight of lactating mice. The concentration of taurine and cystathionine in milk was significantly higher in the stress group, though stress did not alter their concentration in maternal plasma. The ratio of taurine concentration in milk to its concentration in maternal plasma was significantly higher in the stress group, suggesting that stress promoted taurine transportation into milk. Furthermore, taurine concentration in milk was positively correlated with corticosterone levels in plasma. In conclusion, restraint stress in lactating mice caused the changes in the metabolism and in the transportation of sulfur-containing amino acids and resulted in higher taurine concentration in milk. Taurine concentration in milk could also be a good parameter for determining stress status in dams.


Subject(s)
Amino Acids/metabolism , Milk/metabolism , Restraint, Physical , Stress, Physiological , Sulfur/metabolism , Amino Acids/chemistry , Animals , Female , Lactation , Mice, Inbred ICR , Pregnancy , Taurine/metabolism
10.
J Therm Biol ; 71: 74-82, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29301703

ABSTRACT

Thermal manipulation declined embryonic brain and liver concentrations of leucine (Leu). L-Leu in ovo injection afforded thermotolerance in male broiler chicks. This study aimed to examine the role of in ovo injection of L-Leu in metabolic functions, and differences between male and female broiler chicks in thermotolerance. L-Leu injection was performed in ovo on embryonic day (ED) 7 to reveal its role in metabolic activity in embryos and in post-hatch male and female broiler chicks under heat stress. To examine the metabolic activity of embryos, oxygen (O2) consumption, carbon dioxide (CO2) production, heat production and plasma metabolites were analyzed. Rectal temperature, food intake and plasma metabolites were also analyzed in heat-exposed (35 ± 1°C for 180min) male and female broiler chicks. It was found that O2 consumption, heat production, and plasma triacylglycerol (TG) and non-esterified fatty acid (NEFA) concentrations in ED 14 embryos were significantly increased by in ovo injection of L-Leu in comparison with the controls. Plasma glucose concentration was significantly increased in both male and female chicks under heat stress, but in ovo injection of L-Leu attenuated the increase in male chicks. In contrast, plasma TG, NEFA, and ketone body concentrations were significantly higher in male chicks injected in ovo with L-Leu, but not in similarly injected female chicks, compared with control chicks, all under heat stress. Rectal temperature and food intake were significantly lower in male, but not female, chicks under heat stress injected in ovo with L-Leu. In conclusion, in ovoL-Leu administration enhanced the prenatal metabolic rate and lipid metabolisms, which possibly appeared as sex-dependent fashion to facilitate thermotolerance in males. A reduction in heat production through lowered food intake in heat-exposed male, but not female chicks injected in ovo with L-Leu may help to afford thermotolerance in male broiler chicks under heat stress.


Subject(s)
Chickens/physiology , Leucine/pharmacology , Lipid Metabolism , Thermotolerance , Animals , Basal Metabolism , Chick Embryo/drug effects , Chickens/growth & development , Chickens/metabolism , Energy Intake , Female , Heat-Shock Response , Leucine/administration & dosage , Male , Sex Factors
11.
J Vet Med Sci ; 80(2): 235-241, 2018 Feb 09.
Article in English | MEDLINE | ID: mdl-29269705

ABSTRACT

The growth of offspring is affected not only by the protein in maternal milk but also by the free amino acids (FAAs) contained in it. L-Serine (L-Ser) is known as an important FAA for the development of the central nervous system and behavioral activity. However, it is not clear whether L-Ser is transported into the pool of FAAs contained in milk and thereby affects the growth of offspring. Using mice, the current study investigated the effects of dietary L-Ser during pregnancy and lactation on milk and plasma FAA composition, as well as on growth, behavior, and plasma FAAs of offspring. Dietary L-Ser did not significantly affect the maternal, anxiety-like, or cognitive behaviors of either the dam or the offspring. The FAA composition notably differed between plasma and milk in dams. In milk, dietary L-Ser increased free L-Ser levels, while glutamic acid, L-alanine, D-alanine and taurine levels were decreased. The body weight of the offspring was lowered by dietary L-Ser. The concentrations of plasma FAAs in 13-day-old offspring (fed only milk) were not altered, but 20-day-old offspring (fed both milk and parental diet) showed higher plasma L-Ser and D-Ser concentrations as a result of the dietary L-Ser treatment. In conclusion, the present study found that dietary L-Ser transported easily from maternal plasma to milk and that dietary L-Ser treatment could change the FAA composition of milk, but that an enhanced level of L-Ser in milk did not enhance the plasma L-Ser level in the offspring.


Subject(s)
Amino Acids/analysis , Milk/chemistry , Serine/pharmacology , Amino Acids/blood , Animals , Animals, Newborn/blood , Animals, Newborn/growth & development , Behavior, Animal/drug effects , Body Weight/drug effects , Diet , Female , Lactation/drug effects , Male , Mice , Mice, Inbred ICR , Pregnancy
12.
Physiol Rep ; 5(23)2017 Dec.
Article in English | MEDLINE | ID: mdl-29208684

ABSTRACT

Exposure of chicks to a high ambient temperature (HT) has previously been shown to increase neuropeptide Y (NPY) mRNA expression in the brain. Furthermore, it was found that NPY has anti-stress functions in heat-exposed fasted chicks. The aim of the study was to reveal the role of central administration of NPY on thermotolerance ability and the induction of heat-shock protein (HSP) and NPY sub-receptors (NPYSRs) in fasted chicks with the contribution of plasma metabolite changes. Six- or seven-day-old chicks were centrally injected with 0 or 375 pmol of NPY and exposed to either HT (35 ± 1°C) or control thermoneutral temperature (CT: 30 ± 1°C) for 60 min while fasted. NPY reduced body temperature under both CT and HT NPY enhanced the brain mRNA expression of HSP-70 and -90, as well as of NPYSRs-Y5, -Y6, and -Y7, but not -Y1, -Y2, and -Y4, under CT and HT A coinjection of an NPYSR-Y5 antagonist (CGP71683) and NPY (375 pmol) attenuated the NPY-induced hypothermia. Furthermore, central NPY decreased plasma glucose and triacylglycerol under CT and HT and kept plasma corticosterone and epinephrine lower under HT NPY increased plasma taurine and anserine concentrations. In conclusion, brain NPYSR-Y5 partially afforded protective thermotolerance in heat-exposed fasted chicks. The NPY-mediated reduction in plasma glucose and stress hormone levels and the increase in free amino acids in plasma further suggest that NPY might potentially play a role in minimizing heat stress in fasted chicks.


Subject(s)
Brain/metabolism , Fasting/metabolism , Heat-Shock Response , Hypothermia/metabolism , Neuropeptide Y/pharmacology , Adaptation, Physiological , Animals , Blood Glucose/metabolism , Body Temperature , Brain/drug effects , Chickens , Fasting/physiology , Heat-Shock Proteins/metabolism , Hypothermia/etiology , Hypothermia/physiopathology , Male , Naphthalenes/pharmacology , Neuropeptide Y/toxicity , Pyrimidines/pharmacology , Receptors, Neuropeptide Y/metabolism
13.
Br J Nutr ; 117(6): 775-783, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28393748

ABSTRACT

Recently, it has been found that the gut microbiota influences functions of the host brain by affecting monoamine metabolism. The present study focused on the relationship between the gut microbiota and the brain amino acids. Specific pathogen-free (SPF) and germ-free (GF) mice were used as experimental models. Plasma and brain regions were sampled from mice at 7 and 16 weeks of age, and analysed for free d- and l-amino acids, which are believed to affect many physiological functions. At 7 weeks of age, plasma concentrations of d-aspartic acid (d-Asp), l-alanine (l-Ala), l-glutamine (l-Gln) and taurine were higher in SPF mice than in GF mice, but no differences were found at 16 weeks of age. Similar patterns were observed for the concentrations of l-Asp in striatum, cerebral cortex and hippocampus, and l-arginine (l-Arg), l-Ala and l-valine (l-Val) in striatum. In addition, the concentrations of l-Asp, d-Ala, l-histidine, l-isoleucine (l-Ile), l-leucine (l-Leu), l-phenylalanine and l-Val were significantly higher in plasma of SPF mice when compared with those of GF mice. The concentrations of l-Arg, l-Gln, l-Ile and l-Leu were significantly higher in SPF than in GF mice, but those of d-Asp, d-serine and l-serine were higher in some brain regions of GF mice than in those of SPF mice. In conclusion, the concentration of amino acids in the host brain seems to be dependent on presence of the gut microbiota. Amino acid metabolism in the host brain may be modified by manipulating microbiota communities.


Subject(s)
Amino Acids/metabolism , Bacteria/metabolism , Brain/metabolism , Gastrointestinal Microbiome , Amino Acids/blood , Animals , Mice, Inbred BALB C , Neurotransmitter Agents/metabolism
14.
Behav Brain Res ; 328: 227-234, 2017 06 15.
Article in English | MEDLINE | ID: mdl-28392322

ABSTRACT

Attention-deficit hyperactivity disorder (ADHD) is defined as attention deficiency, restlessness and distraction. The main characteristics of ADHD are hyperactivity, impulsiveness and carelessness. There is a possibility that these abnormal behaviors, in particular hyperactivity, are derived from abnormal dopamine (DA) neurotransmission. To elucidate the mechanism of high locomotor activity, the relationship between innate activity levels and brain monoamines and amino acids was investigated in this study. Differences in locomotor activity between ICR, C57BL/6J and CBA/N mice were determined using the open field test. Among the three strains, ICR mice showed the greatest amount of locomotor activity. The level of striatal and cerebellar DA was lower in ICR mice than in C57BL/6J mice, while the level of L-tyrosine (L-Tyr), a DA precursor, was higher in ICR mice. These results suggest that the metabolic conversion of L-Tyr to DA is lower in ICR mice than it is in C57BL/6J mice. Next, the effects of intraperitoneal injection of (6R)-5, 6, 7, 8-tetrahydro-l-biopterin dihydrochloride (BH4) (a co-enzyme for tyrosine hydroxylase) and L-3,4-dihydroxyphenylalanine (L-DOPA) on DA metabolism and behavior in ICR mice were investigated. The DA level in the brain was increased by BH4 administration, but the increased DA did not influence behavior. However, L-DOPA administration drastically lowered locomotor activity and increased DA concentration in several parts of the brain. The reduced locomotor activity may have been a consequence of the overproduction of DA. In conclusion, the high level of locomotor activity in ICR mice may be explained by a strain-specific DA metabolism.


Subject(s)
Brain/metabolism , Dopamine/metabolism , Mice, Inbred ICR/metabolism , Motor Activity/physiology , Analysis of Variance , Animals , Brain/drug effects , Dopamine Agents/pharmacology , Dose-Response Relationship, Drug , Levodopa/pharmacology , Male , Mice, Inbred C57BL/metabolism , Mice, Inbred CBA/metabolism , Motor Activity/drug effects , Species Specificity
15.
Neuropeptides ; 62: 93-100, 2017 Apr.
Article in English | MEDLINE | ID: mdl-27979380

ABSTRACT

Recently, we demonstrated that brain neuropeptide Y (NPY) mRNA expression was increased in heat exposed chicks. However, the functions of brain NPY during heat stress are unknown. This study was conducted to investigate whether centrally administered NPY affects food intake, rectal temperature, monoamines, stress hormones and plasma metabolites in chicks under high ambient temperatures (HT). Five or six-day-old chicks were centrally injected with 0, 188 or 375pmol of NPY and exposed to either HT (35±1°C) or a control thermoneutral temperature (CT; 30±1°C) for 3h whilst fed or fasted. NPY increased food intake under both CT and HT. NPY reduced rectal temperature 1 and 2h after central administration under CT, but not under HT. Interestingly, NPY decreased brain serotonin and norepinephrine concentrations in fed chicks, but increased concentrations of brain dopamine and its metabolites in fasted and fed chicks, respectively. Plasma epinephrine was decreased by NPY in fed chicks, but plasma concentrations of norepinephrine and epinephrine were increased significantly by NPY in fasted-heat exposed chicks. Furthermore, NPY significantly reduced plasma corticosterone concentrations in fasted chicks. Plasma glucose and triacylglycerol were increased by NPY in fed chicks, but triacylglycerol declined in fasted NPY-injected chicks. In conclusion, brain NPY may attenuate the reduction of food intake during heat stress and the increased brain NPY might be a potential regulator of the monoamines and corticosterone to modulate stress response in heat-exposed chicks.


Subject(s)
Corticosterone/blood , Eating/drug effects , Fasting , Feeding Behavior/drug effects , Neuropeptide Y/pharmacology , Animals , Blood Glucose/metabolism , Chickens , Feeding Behavior/physiology , Hot Temperature , Male , Triglycerides/metabolism
16.
Mech Ageing Dev ; 162: 72-79, 2017 03.
Article in English | MEDLINE | ID: mdl-28017699

ABSTRACT

Aging and stress affect quality of life, and proper nourishment is one of means of preventing this effect. Today, there is a focus on the amount of protein consumed by elderly people; however, changes in the amino acid metabolism of individuals have not been fully considered. In addition, the difference between average life span and healthy life years is larger in females than it is in males. To prolong the healthy life years of females, in the present study we evaluated the influence of stress and aging on metabolism and emotional behavior by comparing young and middle-aged female mice. After 28 consecutive days of immobilization stress, behavioral tests were conducted and tissue sampling was performed. The results showed that the body weight of middle-aged mice was severely lowered by stress, but emotional behaviors were hardly influenced by either aging or stress. Aging influenced changes in amino acid metabolism in the brain and increased various amino acid levels in the uterus and ovary. In conclusion, we found that aged mice were more susceptible to stress in terms of body-weight reduction, and that amino acid metabolisms in the brain and genital organs were largely influenced by aging rather than by stress.


Subject(s)
Aging/metabolism , Amino Acids/metabolism , Brain/metabolism , Ovary/metabolism , Stress, Psychological/metabolism , Uterus/metabolism , Animals , Emotions , Female , Mice , Mice, Inbred ICR
17.
Anim Sci J ; 88(3): 533-545, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27435047

ABSTRACT

The Djungarian hamster and the Roborovskii hamster belong to the same genus of Phodopus. However, the Djungarian hamster is tame and shows sedative behavior, while Roborovskii hamster is not tame and shows high levels of locomotor activity. Hyperactivity occurs in animals with tameless behavior. Tameness or tamelessness behavior is very important because tameness helps for breeding and controlling as well as it enables a strong human-animal bond. In the present study, we examined the relationships between activity levels and cognitive function in Djungarian and Roborovskii hamsters. Three types of behavioral tests were performed to analyze their activity levels, memory and leaning ability. The levels of L- and D-amino acids and monoamines in the brain were then determined. Roborovskii hamsters showed significantly higher locomotor activity than Djungarian hamsters. Memory ability was not significantly different between the two hamsters, but Roborovskii hamsters showed lower learning ability. Brain levels of D-serine which is related to enhancement in memory and learning ability, were significantly higher in Djungarian hamsters, but the reverse was true for brain dopamine and serotonin levels. These results suggest that these differences in brain metabolism may be related to the behavioral differences between the two hamsters.


Subject(s)
Behavior, Animal , Brain/metabolism , Learning , Locomotion , Phodopus/metabolism , Phodopus/psychology , Amino Acids/metabolism , Animals , Biogenic Monoamines/metabolism , Cognition , Cricetinae , Dopamine/metabolism , Human-Animal Bond , Humans , Male , Memory , Serine/metabolism , Serotonin/metabolism
18.
Article in English | MEDLINE | ID: mdl-27840178

ABSTRACT

Thermal manipulation (TM) of incubation temperature causes metabolic alterations and contributes to improving thermotolerance in chicks post hatching. However, there has been no report on amino acid metabolism during TM and the part it plays in thermotolerance. In this study, we therefore first analyzed free amino acid concentrations in the embryonic brain and liver during TM (38.6°C, 6h/d during embryonic day (ED) 10 to ED 18). It was found that leucine (Leu), phenylalanine and lysine were significantly decreased in the embryonic brain and liver. We then chose l-Leu and other branched-chain amino acids (l-isoleucine (L-Ile) and l-valine (l-Val)) for in ovo injection on ED 7 to reveal their roles in thermoregulation, growth, food intake and thermotolerance in chicks. It was found that in ovo injection of l-Leu, but not of l-Ileu or l-Val, caused a significant decline in body temperature at hatching and increased food intake and body weight gain in broiler chicks. Interestingly, in ovo injection of l-Leu resulted in the acquisition of thermotolerance under high ambient temperature (35±1°C for 180min) in comparison with the control thermoneutral temperature (28±1°C for 180min). These results indicate that the free amino acid concentrations during embryogenesis were altered by TM. l-Leu administration in eggs caused a reduction in body temperature at hatching, and afforded thermotolerance in heat-exposed young chicks, further suggesting that l-Leu may be one of the key metabolic factors involved in controlling body temperature in embryos, as well as in producing thermotolerance after hatching.


Subject(s)
Body Temperature Regulation , Chickens/physiology , Leucine/metabolism , Animals , Chick Embryo , Feeding Behavior , Growth
19.
Development ; 143(17): 3085-96, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27510968

ABSTRACT

We identified Erythrocyte membrane protein band 4.1-like 5 (Epb41l5) as a substrate for the E3 ubiquitin ligase Mind bomb 1 (Mib1), which is essential for activation of Notch signaling. Although loss of Epb41l5 does not significantly alter the pattern of neural progenitor cells (NPCs) specified as neurons at the neural plate stage, it delays their delamination and differentiation after neurulation when NPCs normally acquire organized apical junctional complexes (AJCs) in the zebrafish hindbrain. Delays in differentiation are reduced by knocking down N-cadherin, a manipulation expected to help destabilize adherens junctions (AJs). This suggested that delays in neuronal differentiation in epb41l5-deficient embryos are related to a previously described role for Epb41l5 in facilitating disassembly of cadherin-dependent AJCs. Mib1 ubiquitylates Epb41l5 to promote its degradation. DeltaD can compete with Epb41l5 to reduce Mib1-dependent Epb41l5 degradation. In this context, increasing the number of NPCs specified to become neurons, i.e. cells expressing high levels of DeltaD, stabilizes Epb41l5 in the embryo. Together, these observations suggest that relatively high levels of Delta stabilize Epb41l5 in NPCs specified as neurons. This, we suggest, helps coordinate NPC specification with Epb41l5-dependent delamination and differentiation as neurons.


Subject(s)
Membrane Proteins/metabolism , Neurons/cytology , Neurons/metabolism , Ubiquitin-Protein Ligases/metabolism , Zebrafish Proteins/metabolism , Zebrafish/metabolism , Animals , Blotting, Western , Cell Line , Dogs , HEK293 Cells , Humans , Immunohistochemistry , Immunoprecipitation , In Situ Hybridization , Membrane Proteins/genetics , Two-Hybrid System Techniques , Ubiquitin-Protein Ligases/genetics , Zebrafish Proteins/genetics
20.
J Atheroscler Thromb ; 23(6): 728-36, 2016 Jun 01.
Article in English | MEDLINE | ID: mdl-26797264

ABSTRACT

AIM: Although neck circumference (NC) is thought to predict obesity-related metabolic abnormality, its causal role in cardiometabolic risk is unclear. The aim of this study was to clarify the impact of changes in NC on cardiometabolic risk in healthy postmenopausal women through a community-based longitudinal study. METHODS: From a local community in Japan, 63 generally healthy postmenopausal women were recruited. All participants received an assessment of obesity-related anthropometric markers, biochemical parameters, and hemodynamic measures and were followed on average for 3 years. RESULTS: At baseline analysis, larger NC was positively associated with atherosclerosis-related markers, brachial-ankle pulse wave velocity (baPWV) and blood pressure, as well as some lipid parameters. After the follow-up period, change in NC was associated with changes in body mass index (BMI), body fat percentage, and waist circumference (WC). Interestingly, significant correlations of change in NC with changes in baPWV and blood pressure were observed, whereas changes in WC and BMI were only associated with changes in low-density lipoprotein cholesterol and/or total cholesterol. In multivariate linear regression analysis, change in NC was significantly associated with changes in baPWV and systolic blood pressure, independent of changes in BMI, WC, and biochemical parameters. In addition, an increase in NC was associated with a 2.69-fold increased odds ratio of accelerated baPWV. CONCLUSIONS: Change in NC was independently associated with changes in atherosclerosis-related markers. These observations suggest that NC is an important predictor of the risk of developing obesity-related atherosclerosis in healthy postmenopausal women.


Subject(s)
Cardiovascular Diseases/etiology , Metabolic Diseases/etiology , Neck/pathology , Obesity, Abdominal/complications , Postmenopause , Aged , Anthropometry , Body Mass Index , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/pathology , Cross-Sectional Studies , Female , Humans , Japan/epidemiology , Longitudinal Studies , Metabolic Diseases/epidemiology , Metabolic Diseases/pathology , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...