Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Infect Dis ; 21(1): 1192, 2021 Nov 26.
Article in English | MEDLINE | ID: mdl-34836500

ABSTRACT

BACKGROUND: Bacteremia due to the Streptococcus bovis/Streptococcus equinus complex (SBSEC) is associated with specific diseases, such as colorectal cancer and infective endocarditis. This study aimed to evaluate the clinical characteristics of SBSEC bacteremia and the accuracy of identification of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and phenotypic identification systems for SBSEC isolates. METHODS: We analyzed patients with SBSEC bacteremia retrospectively between 2012 and 2019 at three hospitals in Japan. We re-identified each SBSEC isolate using sequencing superoxide dismutase (sodA) analysis, MALDI-TOF MS using the MALDI Biotyper, and phenotypic identification using the VITEK2. RESULTS: During the study period, 39 patients with SBSEC bacteremia were identified. S. gallolyticus subsp. pasteurianus (SGSP, n = 29), S. gallolyticus subsp. gallolyticus (SGSG, n = 5), S. lutetiensis (SL, n = 4), and S. infantarius subsp. infantarius (n = 1) were identified using sodA sequencing analysis. Primary bacteremia (36%) was the most common cause of bacteremia, followed by infective endocarditis (26%) and biliary tract infections (23%). Colorectal cancer was associated significantly with SGSG bacteremia, while the sources of bacteremia were similar in each SBSEC subspecies. The MALDI Biotyper was significantly more accurate in identifying the SBSEC isolates at the subspecies level compared to the VITEK2 (92% vs. 67%, P = 0.010). In contrast, there were no significant differences in the rates of correct identification of the SBSEC isolates at the species level between the MALDI Biotyper and the VITEK2 (100% vs. 87%, P = 0.055). CONCLUSIONS: Bacteremia with SGSG was associated with colorectal cancer, and the sources of bacteremia were similar in each SBSEC subspecies. The MALDI-TOF MS was significantly more accurate in identifying SBSEC isolates at the subspecies level than the phenotypic identification systems. The accurate identification of SBSEC isolates using the MALDI-TOF MS and phenotypic identification systems was sufficient at the species level, but it was insufficient at the subspecies level. Therefore, it may be reasonable for clinicians to perform echocardiographies and colonoscopies in all patients with SBSEC bacteremia.


Subject(s)
Bacteremia , Streptococcal Infections , Streptococcus bovis , Humans , Japan/epidemiology , Laboratories , Retrospective Studies , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
2.
Microb Drug Resist ; 23(7): 838-844, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28191865

ABSTRACT

The emergence and spread of carbapenem-resistant gram-negative bacteria poses a serious threat to human health worldwide. Currently, little is known about the molecular mechanisms underlying carbapenem resistance and their prevalence among gram-negative bacteria in Egypt. In this study, we analyzed carbapenemase production in gram-negative bacteria isolated from hospitalized patients in Egypt in 2014. All isolates were subjected to phenotypic and genotypic susceptibility testing for carbapenem resistance. Our results indicated a high level of carbapenem-resistant gram-negative bacteria in Egypt, with 50.8% of the isolates harboring at least one carbapenem resistance gene. OXA-48-like and NDM-1 were the most prevalent carbapenemases, being detected in 49.2%, and 47.7% of carbapenemase-positive isolates, respectively, whereas Verona integron-encoded metallo-ß-lactamase (VIM) was detected in only 26.2% of carbapenemase-positive isolates. This study reports for the first time carbapenemase-producing Serratia marcescens, Morganella morganii, and blaVIM-1-like-producing Pseudomonas aeruginosa in Egypt. It is also the first demonstration of the coexistence of different carbapenemases, being detected in 21.5% of carbapenemase-positive isolates. Effective antibiotic supervision, regional surveillance, and early detection of carbapenemase producers are imperative to prevent their future spread to epidemic levels.


Subject(s)
Escherichia coli/genetics , Morganella morganii/genetics , Pseudomonas aeruginosa/genetics , Serratia marcescens/genetics , beta-Lactam Resistance/genetics , beta-Lactamases/genetics , Anti-Bacterial Agents/pharmacology , Carbapenems/pharmacology , Egypt/epidemiology , Enterobacteriaceae Infections/drug therapy , Enterobacteriaceae Infections/epidemiology , Enterobacteriaceae Infections/microbiology , Escherichia coli/classification , Escherichia coli/drug effects , Escherichia coli/isolation & purification , Escherichia coli Infections/drug therapy , Escherichia coli Infections/epidemiology , Escherichia coli Infections/microbiology , Gene Expression , Hospitals , Humans , Integrons , Microbial Sensitivity Tests , Morganella morganii/classification , Morganella morganii/drug effects , Morganella morganii/isolation & purification , Phylogeny , Pseudomonas Infections/drug therapy , Pseudomonas Infections/epidemiology , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/classification , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/isolation & purification , Serratia Infections/drug therapy , Serratia Infections/epidemiology , Serratia Infections/microbiology , Serratia marcescens/classification , Serratia marcescens/drug effects , Serratia marcescens/isolation & purification , beta-Lactamases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...