Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 35(47): 15051-15062, 2019 Nov 26.
Article in English | MEDLINE | ID: mdl-31671263

ABSTRACT

We present here the construction of a self-assembled two-dimensional network at the liquid/solid interface using a hexagonal pyridine macrocycle which binds an organic cation in its intrinsic porous space by electrostatic interactions. For this purpose, a hexagonal pyridinylene-butadiynylene macrocycle (PyBM) having six octyloxymethyl groups, PyBM-C8, was synthesized. As guests, tropylium (Tr) tetrafluoroborate and trioxatriangulenium (TOTA) hexafluorophosphate were used. In this study, we focused on (i) the network patterns of PyBM-C8 which change in response to its concentration and (ii) the position of the guest immobilized in the porous space of the macrocycle. Scanning tunneling microscopy (STM) observations at the interface of 1,2,4-trichlorobenzene (TCB) and highly oriented pyrolytic graphite (HOPG) revealed that PyBM-C8 formed four different polymorphs, oblique, loose hexagonal, linear, and rectangular, depending on the solute concentration and annealing treatment. Solvent TCB molecules are likely coadsorbed to not only the intrinsically porous space of PyBM-C8 (internal TCB) but also the space outside of the macrocycle between its alkyl chains (external TCB) in most of the cases. Upon adding the guest cation, whereas small Tr was not visualized in the pore due to size mismatching, larger TOTA was clearly observed in each pore. In addition, based on high-resolution STM images of the rhombus packing pattern of PyBM-C8, we revealed experimentally that TOTA was placed at an off-center position of the deformed hexagonal macrocyclic core in the rhombus pattern. On the basis of the molecular mechanics calculations, we hypothesize that the off-center location of TOTA is due to deformation of the hexagonal macrocycle through interaction with two external TCB molecules located at opposite edges of the macrocyclic core. Symmetry breaking of the macrocyclic host framework induced by coadsorbed surrounding solvent molecules thus plays a significant role in host-guest complexation at the liquid/solid interface.

2.
Langmuir ; 34(21): 6036-6045, 2018 05 29.
Article in English | MEDLINE | ID: mdl-29717878

ABSTRACT

We present here the construction of a self-assembled two-dimensional (2D) porous monolayer bearing a highly polar 2D space to study guest co-adsorption through electrostatic interactions at the liquid/solid interface. For this purpose, a dehydrobenzo[12]annulene (DBA) derivative, DBA-TeEG, having tetraethylene glycol (TeEG) groups at the end of the three alternating alkoxy chains connected by p-phenylene linkers was synthesized. As a reference host molecule, DBA-C10, having nonpolar C10 alkyl chains at three alternating terminals, was employed. As guest molecules, hexagonal phenylene-ethynylene macrocycles (PEMs) attached by triethylene glycol (TEG) ester and hexyl ester groups, PEM-TEG and PEM-C6, respectively, at each vertex of the macrocyclic periphery were used. Scanning tunneling microscopy observations at the 1,2,4-trichlorobenzene/highly oriented pyrolytic graphite interface revealed that PEM-TEG was immobilized in the pores formed by DBA-TeEG at higher probability because of electrostatic interactions such as dipole-dipole and hydrogen bonding interactions between oligoether units of the host and guest, in comparison to PEM-C6 with nonpolar groups. These observations are discussed based on molecular mechanics simulations to investigate the role of the polar functional groups. When a nonpolar host matrix formed by DBA-C10 was used, however, only phase separation and preferential adsorption were observed; virtually no host-guest complexation was discernible. This is ascribed to the strong affinity between the guest molecules which form by themselves densely packed van der Waals networks on the surface.

3.
Langmuir ; 33(43): 12453-12462, 2017 10 31.
Article in English | MEDLINE | ID: mdl-28968503

ABSTRACT

We present here hexagonal tiling using hexagonal phenylene-ethynylene and phenylene-butadiynylene macrocycles attached by alkyl ester groups, PEM-C6 and PBM-C8, respectively, or triethylene glycol ester groups, PEM-TEG and PBM-TEG, respectively, at each vertex of the macrocyclic periphery at the liquid/solid interface. In this study, we focused on the effects of macrocyclic core size and the chemical properties of side chains attached to macrocyclic cores as well as solute concentrations on the hexagonal geometry of self-assembled monolayers. STM observations at the 1,2,4-trichrolobenzene/graphite interface revealed that PEM-C6 formed a honeycomb structure by van der Waals interactions between the interdigitated alkyl chains. However, upon increasing solute concentration, it changed to more dense hexagonal structure (tentatively called loose hexagonal structure I). In contrast, PBM-C8 formed loose hexagonal structure II of a slightly different packing mode at low concentration, while at high concentration it formed a high-density hexagonal structure in which alkyl chains are not adsorbed on the surface (dense hexagonal structure). In the dense hexagonal structure, macrocyclic cores are linked by hydrogen bonds between the ester carbonyl oxygen and the aromatic hydrogen atoms of the neighboring macrocycles. The packing geometries of loose hexagonal structures of PEM-C6 and PBM-C8 are different due to the different distance between the attachment of the alkyl ester groups which are located in confined space. On the other hand, PEM-TEG and PBM-TEG formed dense hexagonal structures, similar to PBM-C8 at high concentration, with their TEG units not adsorbed on the surface.

4.
Stem Cells Dev ; 20(9): 1503-10, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21417817

ABSTRACT

The present study was conducted to evaluate the application and efficacy of autologous bone marrow infusion (ABMi) for improvement of liver function in patients with alcoholic liver cirrhosis (ALC). Five subjects and 5 control patients with ALC who had abstained from alcohol intake for 24 weeks before the study were enrolled. Autologous bone marrow cells were washed and injected intravenously, and the changes in serum liver function parameters, and the level of the type IV collagen 7S domain as a marker of fibrosis, were monitored for 24 weeks. The distribution of activated bone marrow was assessed by indium-111-chloride bone marrow scintigraphy. The number of cells infused was 8.0±7.3×10(9) (mean±standard error). The serum levels of albumin and total protein and the prothrombin time were significantly higher during the follow-up period after ABMi than during the observation period in treated patients, whereas no such changes were observed in the controls. In the patients who received ABMi, the Child-Pugh score decreased in all 3 who were classified as class B; the serum levels of type IV collagen 7S domain improved in 4 of the 5 patients; and bone marrow scintigraphy demonstrated an increase of indium-111-chloride uptake in 3 of the 4 patients tested. ABMi for patients with ALC helps improve liver function parameters in comparison with observation during abstinence and ameliorates the degree of fibrosis in terms of serum markers and bone marrow activation in most cases.


Subject(s)
Bone Marrow Transplantation , Liver Cirrhosis, Alcoholic/therapy , Aged , Antigens, CD/metabolism , Blood Proteins/metabolism , Collagen Type IV/blood , Humans , Infusions, Intravenous , Leukocytes, Mononuclear/metabolism , Liver/metabolism , Liver/pathology , Liver/physiopathology , Liver Cirrhosis, Alcoholic/blood , Liver Cirrhosis, Alcoholic/pathology , Liver Function Tests , Male , Middle Aged , Transplantation, Autologous , Treatment Outcome
5.
Plant Physiol Biochem ; 49(1): 55-60, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21055957

ABSTRACT

The effects of aluminium (Al) on the metabolism of organic acids synthesised via nonphotosynthetic carbon fixation in the roots and on malate exudation were investigated in Al-tolerant Shirosanjyaku (SH) and Al-sensitive Chikushikomugi (CK) wheat cultivars labelled with bicarbonate-(14)C. Aluminum triggered the excretion of (14)C into the solution, especially in the SH that excreted 2.5 times more (14)C than the CK. The loss of radioactivity (about 10%) into the solution represented a small drain in the (14)C reserve found in the roots. In the organic acid fraction within the roots, malate contained the greatest amount of (14)C, and this amount decreased rapidly with time in both cultivars. The disappearance of radioactivity in the malate resulted from metabolism and translocation rather than to root efflux. Aluminium decreased the malate concentrations in roots of both cultivars. The Al-sensitive cultivar had higher concentrations of malate regardless of the presence of Al. It was therefore assumed that the decrease of malate concentration in roots under Al stress did not result from the decline in malate synthesis but due to an increase in malate decomposition. This response was interpreted as the result of the Al-induced stress and not as the cause of a differential Al-tolerance between the wheat cultivars. An important component of the differential Al tolerance between SH and CK is the greater ability of the Al-tolerant cultivar to excrete malate from the roots, which is independent of its internal concentration in the roots.


Subject(s)
Adaptation, Physiological , Aluminum/pharmacology , Carbon/metabolism , Malates/metabolism , Plant Roots/metabolism , Stress, Physiological/drug effects , Triticum/drug effects , Bicarbonates/metabolism , Biological Transport/drug effects , Carbon Isotopes/metabolism , Soil Pollutants/adverse effects , Species Specificity , Staining and Labeling , Triticum/classification , Triticum/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...