Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Environ Microbiol ; 89(7): e0086823, 2023 07 26.
Article in English | MEDLINE | ID: mdl-37367298

ABSTRACT

Shewanella oneidensis MR-1 is a facultative anaerobe that grows by respiration using a variety of electron acceptors. This organism serves as a model to study how bacteria thrive in redox-stratified environments. A glucose-utilizing engineered derivative of MR-1 has been reported to be unable to grow in glucose minimal medium (GMM) in the absence of electron acceptors, despite this strain having a complete set of genes for reconstructing glucose to lactate fermentative pathways. To gain insights into why MR-1 is incapable of fermentative growth, this study examined a hypothesis that this strain is programmed to repress the expression of some carbon metabolic genes in the absence of electron acceptors. Comparative transcriptomic analyses of the MR-1 derivative were conducted in the presence and absence of fumarate as an electron acceptor, and these found that the expression of many genes involved in carbon metabolism required for cell growth, including several tricarboxylic acid (TCA) cycle genes, was significantly downregulated in the absence of fumarate. This finding suggests a possibility that MR-1 is unable to grow fermentatively on glucose in minimal media owing to the shortage of nutrients essential for cell growth, such as amino acids. This idea was demonstrated in subsequent experiments that showed that the MR-1 derivative fermentatively grows in GMM containing tryptone or a defined mixture of amino acids. We suggest that gene regulatory circuits in MR-1 are tuned to minimize energy consumption under electron acceptor-depleted conditions, and that this results in defective fermentative growth in minimal media. IMPORTANCE It is an enigma why S. oneidensis MR-1 is incapable of fermentative growth despite having complete sets of genes for reconstructing fermentative pathways. Understanding the molecular mechanisms behind this defect will facilitate the development of novel fermentation technologies for the production of value-added chemicals from biomass feedstocks, such as electro-fermentation. The information provided in this study will also improve our understanding of the ecological strategies of bacteria living in redox-stratified environments.


Subject(s)
Amino Acids , Shewanella , Fermentation , Amino Acids/metabolism , Shewanella/metabolism , Glucose/metabolism , Fumarates/metabolism , Dietary Supplements
2.
Essays Biochem ; 65(2): 355-364, 2021 07 26.
Article in English | MEDLINE | ID: mdl-33769488

ABSTRACT

The genus Shewanella comprises over 70 species of heterotrophic bacteria with versatile respiratory capacities. Some of these bacteria are known to be pathogens of fishes and animals, while many are non-pathogens considered to play important roles in the global carbon cycle. A representative strain is Shewanella oneidensis MR-1 that has been intensively studied for its ability to respire diverse electron acceptors, such as oxygen, nitrate, sulfur compounds, metals, and organics. In addition, studies have been focused on its ability as an electrochemically active bacterium that is capable of discharging electrons to and receiving electrons from electrodes in bioelectrochemical systems (BESs) for balancing intracellular redox states. This ability is expected to be applied to electro-fermentation (EF) for producing value-added chemicals that conventional fermentation technologies are difficult to produce efficiently. Researchers are also attempting to utilize its electrochemical ability for controlling gene expression, for which electro-genetics (EG) has been coined. Here we review fundamental knowledge on this bacterium and discuss future directions of studies on its applications to electro-biotechnology (EB).


Subject(s)
Shewanella , Biotechnology , Electron Transport , Electrons , Oxidation-Reduction , Shewanella/genetics , Shewanella/metabolism
3.
Front Chem ; 9: 805597, 2021.
Article in English | MEDLINE | ID: mdl-35127650

ABSTRACT

According to recent social demands for sustainable developments, the value of biomass as feedstocks for chemical industry is increasing. With the aid of metabolic engineering and genome editing, microbial fermentation has been developed for producing value-added chemicals from biomass feedstocks, while further improvements are desired for producing more diverse chemicals and increasing the production efficiency. The major intrinsic limitation in conventional fermentation technologies is associated with the need for balancing the net redox equivalents between substrates and products, resulting in limited repertories of fermentation products. One solution for this limitation would be "electro-fermentation (EF)" that utilizes bioelectrochemical systems for modifying the intracellular redox state of electrochemically active bacteria, thereby overcoming the redox constraint of fermentation. Recent studies have attempted the production of chemicals based on the concept of EF, while its utility has not been sufficiently demonstrated in terms of low production efficiencies. Here we discuss EF in terms of its concept, current status and future directions, which help us develop its practical applications to sustainable chemical industries.

SELECTION OF CITATIONS
SEARCH DETAIL
...