Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Bot ; 108(10): 1932-1945, 2021 10.
Article in English | MEDLINE | ID: mdl-34658016

ABSTRACT

PREMISE: The hydraulic architecture in the leaves, stems and roots of plants constrains water transport and carbon gain through stomatal limitation to CO2 absorption. Because roots are the main bottleneck in water transport for a range of plant species, we assessed the ecophysiological mechanism and importance of a high fraction of root hydraulic resistance in woody and herbaceous species. METHODS: Biomass partitioning and hydraulic conductance of leaves, stems, and roots of Japanese knotweed (Fallopia japonica, a perennial herb) and Japanese zelkova (Zelkova serrata, a deciduous tall tree) were measured. Theoretical analyses were used to examine whether the measured hydraulic architecture and biomass partitioning maximized the plant photosynthetic rate (the product of leaf area and photosynthetic rate per leaf area). RESULTS: Root hydraulic resistance accounted for 83% and 68% of the total plant resistance for Japanese knotweed and Japanese zelkova, respectively. Comparisons of hydraulic and biomass partitioning revealed that high root-resistance fractions were attributable to low biomass partitioning to root organs rather than high mass-specific root conductance. The measured partitioning of hydraulic resistance closely corresponded to the predicted optimal partitioning, maximizing the plant photosynthetic rate for the two species. The high fraction of root resistance was predicted to be optimal with variations in air humidity and soil water potential. CONCLUSIONS: These results suggest that the hydraulic architecture of plants growing in mesic and fertile habitats not only results in high root resistance due to small biomass partitioning to root organs, but contributes to efficient carbon gain.


Subject(s)
Carbon , Trees , Ecosystem , Photosynthesis , Plant Leaves , Plant Roots , Plant Transpiration , Water , Xylem
2.
Sci Rep ; 10(1): 6594, 2020 04 20.
Article in English | MEDLINE | ID: mdl-32313053

ABSTRACT

At high elevations, winter climatic conditions frequently cause excessive drought stress, which can induce embolism in conifer trees. We investigated the formation and repair of winter embolism in subalpine fir (Abies veitchii) growing near the timberline. We found a complete loss in xylem conductivity [100% percent loss of conductivity (PLC)] at the wind-exposed site (W+) and 40% PLC at the wind-protected site (W-). A PLC of 100% was far above the embolism rate expected from the drought-induced vulnerability analysis in the laboratory. At the W+ site, a PLC of 100% was maintained until May; this suddenly decreased to a negligible value in June, whereas the recovery at the W- site started in late winter and proceeded stepwise. The contrast between the two sites may have occurred because of the different underlying mechanisms of winter embolism. If most tracheids in the xylem of 100% PLC are air-filled, it will be difficult to refill quickly. However, embolism caused by pit aspiration could be restored rapidly, because aspirated pits isolate tracheids from each other and prevent the spread of cavitation. Although severe embolism may cause frost damage of needles, it may have a role in holding water within the stem.

3.
Tree Physiol ; 26(8): 1025-33, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16651252

ABSTRACT

We investigated seasonal patterns of water relations in current-year leaves of three evergreen broad-leaved trees (Ilex pedunculosa Miq., Ligustrum japonicum Thunb., and Eurya japonica Thunb.) with delayed greening in a warm-temperate forest in Japan. We used the pressure-volume method to: (1) assess the extent to which seasonal variation in leaf water relations is attributable to leaf development processes in delayed greening leaves versus seasonal variation in environmental variables; and (2) investigate variation in leaf water relations during the transition from the sapling to the adult tree stage. Leaf mass per unit leaf area was generally lowest just after completion of leaf expansion in May (late spring), and increased gradually throughout the year. Osmotic potential at full turgor (Psi(o) (ft)) and leaf water potential at the turgor loss point (Psi(w) (tlp)) were highest in May, and lowest in midwinter in all species. In response to decreasing air temperature, Psi(o) (ft) dropped at the rate of 0.037 MPa degrees C(-1). Dry-mass-based water content of leaves and the symplastic water fraction of total leaf water content gradually decreased throughout the year in all species. These results indicate that reductions in the symplastic water fraction during leaf development contributed to the passive concentration of solutes in cells and the resulting drop in winter Psi(o) (ft). The ratio of solutes to water volume increased in winter in current-year leaves of L. japonicum and E. japonica, indicating that osmotic adjustment (active accumulation of solutes) also contributed to the drop in winter in Psi(o) (ft). Bulk modulus of elasticity in cell walls fluctuated seasonally, but no general trend was found across species. Over the growing season, Psi(o) (ft) and Psi(w) (tlp) were lower in adult trees than in saplings especially in the case of I. pedunculosa, suggesting that adult-tree leaves are more drought and cold tolerant than sapling leaves. The ontogenetic increase in the stress resistance of I. pedunculosa may be related to its characteristic life form because I. pedunculosa grows taller than the other species studied.


Subject(s)
Ericaceae/metabolism , Ilex/metabolism , Ligustrum/metabolism , Plant Leaves/metabolism , Seasons , Water/metabolism , Cell Wall/metabolism , Climate , Ericaceae/growth & development , Ilex/growth & development , Japan , Ligustrum/growth & development , Plant Leaves/cytology , Plant Leaves/growth & development , Rain , Temperature , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...