Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Publication year range
1.
JAC Antimicrob Resist ; 5(5): dlad106, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37772074

ABSTRACT

Objectives: ESBL and carbapenemase genes in Enterobacterales spread via plasmids. Nosocomial outbreaks caused by Enterobacterales producing both CTX-M-2 and either IMP-1 or IMP-6-type carbapenemases have been reported. These organisms carry the incompatibility type N plasmid belonging to plasmid ST 5 (IncN-pST5). We investigated the construction process of the ESBL and carbapenemase genes co-carrying IncN-pST5. Methods: We retrospectively performed draft WGS analysis for blaIMP- or blaCTX-M-positive Enterobacterales in our strain collection (n = 281). Results: We selected four types of Escherichia coli plasmids for our study: type A, which carries both blaCTX-M-2 and blaIMP-1 (n = 6); type B, which carries both blaCTX-M-2 and blaIMP-6 (n = 2); type C, which carries blaCTX-M-2 (n = 10); and type D, which carries no ß-lactamase genes (n = 1). It should be noted that type D plasmid was only detected in E. coli TUM2805, which carries the blaCTX-M-14 on the IncB/O/B/Z plasmid. Long-read sequencing using MinION revealed that all types of IncN-pST5 were highly conserved and carried a class 1 integron. Integron numbers were type A for In798, type B for In1690, type C for In127 and type D for In207. Because the gene cassettes downstream of blaIMP were different between In798 and In1690, the change from blaIMP-1 to blaIMP-6 by point mutation was unlikely. Representative plasmids from types A, B and C were conjugatively transferred with quite a high frequency between 1.3 × 10-1 and 2.5 × 10-2. Conclusions: This study suggested that IncN-pST5 acquired blaCTX-M-2 by ISEcp1 in a stepwise manner, followed by either blaIMP-1 or blaIMP-6 into a class 1 integron.

2.
Microorganisms ; 11(5)2023 May 09.
Article in English | MEDLINE | ID: mdl-37317224

ABSTRACT

The increase in multidrug-resistant microorganisms that produce extended-spectrum ß-lactamases (ESBLs) and carbapenemases is a serious problem worldwide. Recently, matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) has been used for the rapid detection of antibiotic-resistant bacteria. The objective of this study was to establish a method to detect ESBL-producing Escherichia coli by monitoring the hydrolyzation of cefotaxime (CTX) using MALDI-TOF MS. According to the ratio of the peak intensity of CTX and hydrolyzed-CTX-related compounds, the ESBL-producing strains could be clearly distinguished after 15 min of incubation. Moreover, the minimum inhibitory concentration (MIC) values for E. coli were 8 µg/mL and lower than 4 µg/mL, which could be distinguished after 30 min and 60 min of incubation, respectively. The enzymatic activity was determined using the difference in the signal intensity of the hydrolyzed CTX at 370 Da for the ESBL-producing strains incubated with or without clavulanate. The ESBL-producing strains with low enzymatic activity or blaCTX-M genes could be detected by monitoring the hydrolyzed CTX. These results show that this method can rapidly detect high-sensitivity ESBL-producing E. coli.

4.
J Infect Chemother ; 17(4): 559-62, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21286774

ABSTRACT

Nontypeable Haemophilus influenzae (NTHi) commonly colonizes the upper respiratory tract of children and causes otitis media, sinusitis, and bronchitis. Invasive NTHi diseases such as meningitis and septicemia have rarely been reported, especially in children with underlying predisposing conditions such as head trauma and immune compromise. However, we report a previously healthy 2-year-old girl who developed meningitis and septicemia caused by NTHi biotype ΙΙΙ. She was treated with dexamethasone, meropenem, and ceftriaxone, and recovered uneventfully. We wish to emphasize that NTHi should be borne in mind as a potential pathogen that can cause meningitis and septicemia, even in previously healthy children.


Subject(s)
Bacteremia/microbiology , Haemophilus influenzae/isolation & purification , Meningitis, Haemophilus/microbiology , Anti-Bacterial Agents/therapeutic use , Anti-Inflammatory Agents/therapeutic use , Bacteremia/cerebrospinal fluid , Bacteremia/drug therapy , Ceftriaxone/therapeutic use , Child, Preschool , Dexamethasone/therapeutic use , Female , Humans , Japan , Meningitis, Haemophilus/cerebrospinal fluid , Meningitis, Haemophilus/drug therapy , Meropenem , Thienamycins/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...