Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Neuroinflammation ; 18(1): 288, 2021 Dec 10.
Article in English | MEDLINE | ID: mdl-34893067

ABSTRACT

PURPOSE: While marked reductions in neural activity and mitochondrial function have been reported in Alzheimer's disease (AD), the degree of mitochondrial activity in mild cognitive impairment (MCI) or early-stage AD remains unexplored. Here, we used positron emission tomography (PET) to examine the direct relationship between mitochondrial activity (18F-BCPP-EF) and ß-amyloid (Aß) deposition (11C-PiB) in the same brains of senescence-accelerated mouse prone 10 (SAMP10) mice, an Aß-developing neuroinflammatory animal model showing accelerated senescence with deterioration in cognitive functioning similar to that in MCI. METHODS: Five- to 25-week-old SAMP10 and control SAMR1 mice, were used in the experiments. PET was used to measure the binding levels (standard uptake value ratios; SUVRs) of [18F]2-tert-butyl-4-chloro-5-2H-pyridazin-3-one (18F-BCPP-EF) for mitochondrial complex 1 availability, and 11C-PiB for Aß deposition, in the same animals, and immunohistochemistry for ATPB (an ATP synthase on the mitochondrial inner membrane) was also performed, to determine changes in mitochondrial activity in relation to amyloid burden during the early stage of cognitive impairment. RESULTS: The SUVR of 18F-BCPP-EF was significantly lower and that of 11C-PiB was higher in the 15-week-old SAMP10 mice than in the control and 5-week-old SAMP10 mice. The two parameters were found to negatively correlate with each other. The immunohistochemical analysis demonstrated temporal upregulation of ATPB levels at 15-week-old, but decreased at 25 week-old SAMP10 mice. CONCLUSION: The present results provide in vivo evidence of a decrease in mitochondrial energy production and elevated amyloidosis at an early stage in SAMP10 mice. The inverse correlation between these two phenomena suggests a concurrent change in neuronal energy failure by Aß-induced elevation of neuroinflammatory responses. Comparison of PET data with histological findings suggests that temporal increase of ATPB level may not be neurofunctionally implicated during neuropathological processes, including Aß pathology, in an animal model of early-phase AD spectrum disorder.


Subject(s)
Aging/metabolism , Amyloidosis/metabolism , Brain/metabolism , Mitochondria/metabolism , Positron-Emission Tomography/methods , Aging/genetics , Aging/pathology , Amyloidosis/genetics , Amyloidosis/pathology , Animals , Brain/pathology , Mice , Mice, Transgenic , Mitochondria/genetics , Mitochondria/pathology
2.
Front Mol Neurosci ; 14: 756264, 2021.
Article in English | MEDLINE | ID: mdl-34744626

ABSTRACT

Fibronectin and leucine-rich transmembrane (FLRT) proteins are necessary for various developmental processes and in pathological conditions. FLRT2 acts as a homophilic cell adhesion molecule, a heterophilic repulsive ligand of Unc5/Netrin receptors, and a synaptogenic molecule; the last feature is mediated by binding to latrophilins. Although the function of FLRT2 in regulating cortical migration at the late gestation stage has been analyzed, little is known about the expression pattern of FLRT2 during postnatal central nervous system (CNS) development. In this study, we used Flrt2-LacZ knock-in (KI) mice to analyze FLRT2 expression during CNS development. At the early postnatal stage, FLRT2 expression was largely restricted to several regions of the striatum and deep layers of the cerebral cortex. In adulthood, FLRT2 expression was more prominent in the cerebral cortex, hippocampus, piriform cortex (PIR), nucleus of the lateral olfactory tract (NLOT), and ventral medial nucleus (VM) of the thalamus, but lower in the striatum. Notably, in the hippocampus, FLRT2 expression was confined to the CA1 region and partly localized on pre- and postsynapses whereas only few expression was observed in CA3 and dentate gyrus (DG). Finally, we observed temporally limited FLRT2 upregulation in reactive astrocytes around lesion sites 7 days after thoracic spinal cord injury. These dynamic changes in FLRT2 expression may enable multiple FLRT2 functions, including cell adhesion, repulsion, and synapse formation in different regions during CNS development and after spinal cord injury.

3.
Front Neurosci ; 14: 570974, 2020.
Article in English | MEDLINE | ID: mdl-33324143

ABSTRACT

In the adult mouse brain, neurogenesis occurs mainly in the ventricular-subventricular zone (V-SVZ) and the subgranular zone of the hippocampal dentate gyrus. Neuroblasts generated in the V-SVZ migrate to the olfactory bulb via the rostral migratory stream (RMS) in response to guidance molecules, such as netrin-1. We previously showed that the related netrin-5 (NTN5) is expressed in Mash1-positive transit-amplifying cells and doublecortin-positive neuroblasts in the granule cell layer of the olfactory bulb, the RMS, and the subgranular zone of the adult mouse brain. However, the precise role of NTN5 in adult neurogenesis has not been investigated. In this study, we show that proliferation in the neurogenic niche is impaired in NTN5 knockout mice. The number of proliferating (EdU-labeled) cells in NTN5 KO mice was significantly lower in the V-SVZ, whereas the number of Ki67-positive proliferating cells was unchanged, suggesting a longer cell cycle and decreased cell division in NTN5 KO mice. The number of EdU-labeled cells in the RMS and olfactory bulb was unchanged. By contrast, the numbers of EdU-labeled cells in the cortex, basal ganglia/lateral septal nucleus, and corpus callosum/anterior commissure were increased, which largely represented oligodendrocyte lineage cells. Lastly, we found that chain migration in the RMS of NTN5 KO mice was disorganized. These findings suggest that NTN5 may play important roles in promoting proliferation in the V-SVZ niche, organizing proper chain migration in the RMS, and suppressing oligodendrogenesis in the brain.

SELECTION OF CITATIONS
SEARCH DETAIL
...