Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Microbiology (Reading) ; 168(9)2022 09.
Article in English | MEDLINE | ID: mdl-36149732

ABSTRACT

Mycobacterium tuberculosis is an important global pathogen. We were interested in understanding the role of Rv0233, a proposed subunit of the class IB ribonucleotide reductase, and its role in surviving stress conditions. We constructed an in-frame, unmarked deletion strain of M. tuberculosis and characterized its growth and survival under replicating or non-replicating conditions. We confirmed previous studies that found that Rv0233 is not essential for aerobic growth or survival in the presence of nitrite. We demonstrated that the deletion of Rv0233 does not affect susceptibility to frontline tuberculosis drugs or hydrogen peroxide. The deletion strain survived equally well under nutrient starvation or in hypoxia and was not attenuated for growth in macrophages.


Subject(s)
Mycobacterium tuberculosis , Ribonucleotide Reductases , Hydrogen Peroxide/pharmacology , Macrophages/microbiology , Mycobacterium tuberculosis/genetics , Nitrites
2.
mBio ; 13(3): e0034222, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35575514

ABSTRACT

The ability of pathogenic fungi to obtain essential nutrients from the host is vital for virulence. In Candida albicans, acquisition of the macronutrient phosphate is regulated by the Pho4 transcription factor and is important for both virulence and resistance to host-encountered stresses. All cells store phosphate in the form of polyphosphate (polyP), a ubiquitous polymer comprising tens to hundreds of phosphate residues. Release of phosphate from polyP is one of the first responses evoked in response to phosphate starvation, and here, we sought to explore the importance of polyP mobilization in the pathobiology of C. albicans. We found that two polyphosphatases, Ppn1 and Ppx1, function redundantly to release phosphate from polyP in C. albicans. Strikingly, we reveal that blocking polyP mobilization prevents the activation of the Pho4 transcription factor: following Pi starvation, Pho4 fails to accumulate in the nucleus and induce Pi acquisition genes in ppn1Δ ppx1Δ cells. Consequently, ppn1Δ ppx1Δ cells display impaired resistance to the same range of stresses that require Pho4 for survival. In addition, cells lacking both polyphosphatases are exquisitely sensitive to DNA replication stress, indicating that polyP mobilization is needed to support the phosphate-demanding process of DNA replication. Blocking polyP mobilization also results in significant morphological defects, as ppn1Δ ppx1Δ cells form large pseudohypha-like cells that are resistant to serum-induced hypha formation. Thus, polyP mobilization impacts key processes important for the pathobiology of C. albicans, and consistent with this, we found that blocking this process attenuates the virulence of this important human fungal pathogen. IMPORTANCE Acquisition of the essential macronutrient phosphate is important for the virulence of Candida albicans, a major human fungal pathogen. All cells store phosphate as polyphosphate (polyP), which is rapidly mobilized when phosphate is limiting. Here, we identified the major phosphatases involved in releasing phosphate from polyP in C. albicans. By blocking this process, we found that polyP mobilization impacts many process that contribute to C. albicans pathogenesis. Notably, we found that blocking polyP mobilization inhibits activation of the Pho4 transcription factor, the master regulator of phosphate acquisition. In addition, cell cycle progression, stress resistance, morphogenetic switching, and virulence are all impaired in cells that cannot mobilize polyP. This study therefore provides new insight into the importance of polyP mobilization in promoting the virulence of C. albicans. As phosphate homeostasis strategies differ between fungal pathogen and host, this offers promise for the future development of antifungals.


Subject(s)
Candida albicans , DNA-Binding Proteins/metabolism , Polyphosphates , Candida albicans/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Humans , Hyphae/metabolism , Polyphosphates/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Virulence/genetics
3.
mSphere ; 5(6)2020 11 04.
Article in English | MEDLINE | ID: mdl-33148826

ABSTRACT

Candida albicans is an opportunistic fungal pathogen of humans known for its ability to cause a wide range of infections. One major virulence factor of C. albicans is its ability to form hyphae that can invade host tissues and cause disseminated infections. Here, we introduce a method based on atomic force microscopy to investigate C. albicans hyphae in situ on silicone elastomer substrates, focusing on the effects of temperature and antifungal drugs. Hyphal growth rates differ significantly for measurements performed at different physiologically relevant temperatures. Furthermore, it is found that fluconazole is more effective than caspofungin in suppressing hyphal growth. We also investigate the effects of antifungal drugs on the mechanical properties of hyphal cells. An increase in Young's modulus and a decrease in adhesion force are observed in hyphal cells subjected to caspofungin treatment. Young's moduli are not significantly affected following treatment with fluconazole; the adhesion force, however, increases. Overall, our results provide a direct means of observing the effects of environmental factors and antifungal drugs on C. albicans hyphal growth and mechanics with high spatial resolution.IMPORTANCECandida albicans is one of the most common pathogens of humans. One important virulence factor of C. albicans is its ability to form elongated hyphae that can invade host tissues and cause disseminated infections. Here, we show the effect of different physiologically relevant temperatures and common antifungal drugs on the growth and mechanical properties of C. albicans hyphae using atomic force microscopy. We demonstrate that minor temperature fluctuations within the normal range can have profound effects on hyphal cell growth and that different antifungal drugs impact hyphal cell stiffness and adhesion in different ways.


Subject(s)
Candida albicans/growth & development , Hyphae/growth & development , Microscopy, Atomic Force/methods , Antifungal Agents/pharmacology , Candida albicans/drug effects , Candida albicans/ultrastructure , Cell Adhesion , Hyphae/drug effects , Hyphae/ultrastructure , Image Processing, Computer-Assisted/methods , Silicones , Temperature , Virulence Factors
4.
Curr Genet ; 66(6): 1059-1068, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32876716

ABSTRACT

The human fungal pathogen Candida albicans maintains pathogenic and commensal states primarily through cell wall functions. The echinocandin antifungal drug caspofungin inhibits cell wall synthesis and is widely used in treating disseminated candidiasis. Signaling pathways are critical in coordinating the adaptive response to cell wall damage (CWD). C. albicans executes a robust transcriptional program following caspofungin-induced CWD. A comprehensive analysis of signaling pathways at the transcriptional level facilitates the identification of prospective genes for functional characterization and propels the development of novel antifungal interventions. This review article focuses on the molecular functions and signaling crosstalk of the C. albicans transcription factors Sko1, Rlm1, and Cas5 in caspofungin-induced CWD signaling.


Subject(s)
Basic-Leucine Zipper Transcription Factors/genetics , Cell Wall/genetics , MADS Domain Proteins/genetics , Repressor Proteins/genetics , Saccharomyces cerevisiae Proteins/genetics , Transcription Factors/genetics , Candida albicans/drug effects , Candida albicans/genetics , Caspofungin/pharmacology , Cell Wall/drug effects , Gene Expression Regulation, Fungal/drug effects , Humans , Saccharomyces cerevisiae/genetics , Signal Transduction/drug effects , Transcription, Genetic/genetics
5.
PLoS Genet ; 16(7): e1008908, 2020 07.
Article in English | MEDLINE | ID: mdl-32639995

ABSTRACT

The human fungal pathogen Candida albicans is constantly exposed to environmental challenges impacting the cell wall. Signaling pathways coordinate stress adaptation and are essential for commensalism and virulence. The transcription factors Sko1, Cas5, and Rlm1 control the response to cell wall stress caused by the antifungal drug caspofungin. Here, we expand the Sko1 and Rlm1 transcriptional circuit and demonstrate that Rlm1 activates Sko1 cell wall stress signaling. Caspofungin-induced transcription of SKO1 and several Sko1-dependent cell wall integrity genes are attenuated in an rlm1Δ/Δ mutant strain when compared to the treated wild-type strain but not in a cas5Δ/Δ mutant strain. Genome-wide chromatin immunoprecipitation (ChIP-seq) results revealed numerous Sko1 and Rlm1 directly bound target genes in the presence of caspofungin that were undetected in previous gene expression studies. Notable targets include genes involved in cell wall integrity, osmolarity, and cellular aggregation, as well as several uncharacterized genes. Interestingly, we found that Rlm1 does not bind to the upstream intergenic region of SKO1 in the presence of caspofungin, indicating that Rlm1 indirectly controls caspofungin-induced SKO1 transcription. In addition, we discovered that caspofungin-induced SKO1 transcription occurs through self-activation. Based on our ChIP-seq data, we also discovered an Rlm1 consensus motif unique to C. albicans. For Sko1, we found a consensus motif similar to the known Sko1 motif for Saccharomyces cerevisiae. Growth assays showed that SKO1 overexpression suppressed caspofungin hypersensitivity in an rlm1Δ/Δ mutant strain. In addition, overexpression of the glycerol phosphatase, RHR2, suppressed caspofungin hypersensitivity specifically in a sko1Δ/Δ mutant strain. Our findings link the Sko1 and Rlm1 signaling pathways, identify new biological roles for Sko1 and Rlm1, and highlight the complex dynamics underlying cell wall signaling.


Subject(s)
Basic-Leucine Zipper Transcription Factors/genetics , Candida albicans/drug effects , Caspofungin/pharmacology , MADS Domain Proteins/genetics , Repressor Proteins/genetics , Saccharomyces cerevisiae Proteins/genetics , Antifungal Agents/pharmacology , Candida albicans/genetics , Candida albicans/pathogenicity , Cell Wall/drug effects , Cell Wall/genetics , Fungal Proteins/genetics , Gene Expression Regulation, Fungal , Humans , Phosphorylation/drug effects , Saccharomyces cerevisiae/genetics , Signal Transduction/drug effects , Transcription Factors/genetics
6.
PLoS One ; 14(4): e0214958, 2019.
Article in English | MEDLINE | ID: mdl-30978223

ABSTRACT

The menaquinone biosynthetic pathway presents a promising drug target against Mycobacterium tuberculosis and potentially other Gram-positive pathogens. In the present study, the essentiality, steady state kinetics of MenA from M. tuberculosis and the mechanism of MenA inhibition by Ro 48-8071 were characterized. MenA [isoprenyl diphosphate:1,4-dihydroxy-2-naphthoate (DHNA) isoprenyltransferase] catalyzes a critical reaction in menaquinone biosynthesis that involves the conversion of cytosolic DHNA, to membrane bound demethylmenaquinone by transferring a hydrophobic 45-carbon isoprenoid chain (in the case of mycobacteria) to the ring nucleus of DHNA. Rv0534c previously identified as the gene encoding MenA in M. tuberculosis complemented a menA deletion in E. coli and an E. coli host expressing Rv0534c exhibited an eight-fold increase in MenA specific activity over the control strain harboring empty vector under similar assay conditions. Expression of Rv0534c is essential for mycobacterial survival and the native enzyme from M. tuberculosis H37Rv was characterized using membrane preparations as it was not possible to solubilize and purify the recombinant enzyme. The enzyme is absolutely dependent on the presence of a divalent cation for optimal activity with Mg+2 being the most effective and is active over a wide pH range, with pH 8.5 being optimal. The apparent Km values for DHNA and farnesyl diphosphate were found to be 8.2 and 4.3 µM, respectively. Ro 48-8071, a compound previously reported to inhibit mycobacterial MenA activity, is non-competitive with regard to DHNA and competitive with regard to the isoprenyldiphosphate substrate.


Subject(s)
Alkyl and Aryl Transferases/chemistry , Alkyl and Aryl Transferases/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Microbial Viability , Mycobacterium tuberculosis/enzymology , Alkyl and Aryl Transferases/genetics , Bacterial Proteins/genetics , Escherichia coli/enzymology , Escherichia coli/genetics , Gene Deletion , Genetic Complementation Test , Mycobacterium tuberculosis/genetics , Naphthols/chemistry , Naphthols/metabolism , Substrate Specificity
7.
Infect Immun ; 86(7)2018 07.
Article in English | MEDLINE | ID: mdl-29735520

ABSTRACT

Polymicrobial intra-abdominal infections (IAIs) are a significant cause of morbidity and mortality, particularly when fungal pathogens are involved. Our experimental murine model of IAI involving intraperitoneal inoculation of Candida albicans and Staphylococcus aureus results in synergistic lethality (∼80%) due to exacerbated inflammation. Monomicrobial infection results in no mortality, despite a microbial burden and dissemination similar to those in a coinfection. In the coinfection model, the immunomodulatory eicosanoid prostaglandin E2 (PGE2) was determined to be necessary and sufficient to induce mortality, implicating PGE2 as the central mediator of the amplified inflammatory response. The aim of this study was to identify key components of the PGE2 biosynthetic and signaling pathway involved in the inflammatory response and explore whether these can be targeted to prevent or reduce mortality. Using selective pharmacological inhibitors of cyclooxygenases (COX) or PGE2 receptor antagonists in the C. albicans-S. aureus IAI mouse model, we found that inhibition of COX and/or blocking of PGE2 receptor 1 (EP1) or PGE2 receptor 3 (EP3) signaling reduced proinflammatory cytokine production, promoted interleukin-10 production, reduced cellular damage in the peritoneal cavity, and, most importantly, significantly improved survival. The greatest effect on survival was obtained by the simultaneous inhibition of COX-1 activity and EP1 and EP3 receptor signaling. Importantly, early inhibition of PGE2 pathways dramatically improved the survival of fluconazole-treated mice compared with that achieved with fluconazole treatment alone. These findings indicate that COX-1 and the EP1 and EP3 receptors mediate the downstream pathological effects of PGE2 during polymicrobial IAI and may serve as effective therapeutic targets.


Subject(s)
Candida albicans/metabolism , Candidiasis/physiopathology , Eicosanoids/biosynthesis , Inflammation/physiopathology , Intraabdominal Infections/physiopathology , Staphylococcal Infections/physiopathology , Staphylococcus aureus/metabolism , Animals , Disease Models, Animal , Inflammation/chemically induced , Mice , Signal Transduction/drug effects
8.
Article in English | MEDLINE | ID: mdl-29263068

ABSTRACT

Polymicrobial intra-abdominal infections (IAI) involving Candida albicans and Staphylococcus aureus are associated with severe morbidity and mortality (∼80%). Our laboratory discovered that the immunomodulatory eicosanoid prostaglandin E2 (PGE2) plays a key role in the lethal inflammatory response during polymicrobial IAI using a mouse model of infection. In studies designed to uncover key PGE2 biosynthesis/signaling components involved in the response, selective eicosanoid enzyme inhibitors and receptor antagonists were selected and prescreened for antimicrobial activity against C. albicans or S. aureus Unexpectedly, we found that the EP4 receptor antagonist L-161,982 had direct growth-inhibitory effects on S. aureusin vitro at the physiological concentration required to block the PGE2 interaction with EP4 This antimicrobial activity was observed with methicillin-sensitive S. aureus and methicillin-resistant S. aureus (MRSA) strains, with the MIC and minimum bactericidal concentration values for planktonic cells being 50 µg/ml and 100 µg/ml, respectively. In addition, L-161,982 inhibited S. aureus biofilm formation and had activity against preformed mature biofilms. More importantly, treatment of mice with L-161,982 following intraperitoneal inoculation with a lethal dose of MRSA significantly reduced the bioburden and enhanced survival. Furthermore, L-161,982 protected mice against the synergistic lethality induced by coinfection with C. albicans and S. aureus The antimicrobial activity of L-161,982 is independent of EP4 receptor inhibitory activity; an alternative EP4 receptor antagonist exerted no antimicrobial or protective effects. Taken together, these findings demonstrate that L-161,982 has potent antimicrobial activity against MRSA and may represent a significant therapeutic alternative in improving the prognosis of mono- or polymicrobial infections involving MRSA.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Anti-Infective Agents/therapeutic use , Methicillin-Resistant Staphylococcus aureus/drug effects , Receptors, Prostaglandin E, EP2 Subtype/antagonists & inhibitors , Animals , Biofilms/drug effects , Candida albicans/drug effects , Candida albicans/pathogenicity , Female , Methicillin-Resistant Staphylococcus aureus/pathogenicity , Mice , Microbial Sensitivity Tests , Peritonitis/drug therapy , Peritonitis/microbiology , Receptors, Prostaglandin E, EP4 Subtype/metabolism , Staphylococcus aureus/drug effects , Staphylococcus aureus/pathogenicity
9.
PLoS Pathog ; 13(1): e1006131, 2017 01.
Article in English | MEDLINE | ID: mdl-28135328

ABSTRACT

The Ypd1 phosphorelay protein is a central constituent of fungal two-component signal transduction pathways. Inhibition of Ypd1 in Saccharomyces cerevisiae and Cryptococcus neoformans is lethal due to the sustained activation of the 'p38-related' Hog1 stress-activated protein kinase (SAPK). As two-component signalling proteins are not found in animals, Ypd1 is considered to be a prime antifungal target. However, a major fungal pathogen of humans, Candida albicans, can survive the concomitant sustained activation of Hog1 that occurs in cells lacking YPD1. Here we show that the sustained activation of Hog1 upon Ypd1 loss is mediated through the Ssk1 response regulator. Moreover, we present evidence that C. albicans survives SAPK activation in the short-term, following Ypd1 loss, by triggering the induction of protein tyrosine phosphatase-encoding genes which prevent the accumulation of lethal levels of phosphorylated Hog1. In addition, our studies reveal an unpredicted, reversible, mechanism that acts to substantially reduce the levels of phosphorylated Hog1 in ypd1Δ cells following long-term sustained SAPK activation. Indeed, over time, ypd1Δ cells become phenotypically indistinguishable from wild-type cells. Importantly, we also find that drug-induced down-regulation of YPD1 expression actually enhances the virulence of C. albicans in two distinct animal infection models. Investigating the underlying causes of this increased virulence, revealed that drug-mediated repression of YPD1 expression promotes hyphal growth both within murine kidneys, and following phagocytosis, thus increasing the efficacy by which C. albicans kills macrophages. Taken together, these findings challenge the targeting of Ypd1 proteins as a general antifungal strategy and reveal novel cellular adaptation mechanisms to sustained SAPK activation.


Subject(s)
Candida albicans/physiology , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal , MAP Kinase Signaling System , Mitogen-Activated Protein Kinases/metabolism , Animals , Candida albicans/enzymology , Candida albicans/genetics , Candida albicans/pathogenicity , Down-Regulation , Female , Fungal Proteins/genetics , Gene Deletion , Humans , Mice , Mice, Inbred BALB C , Mitogen-Activated Protein Kinases/genetics , Models, Biological , Phenotype , Phosphorylation , Stress, Physiological , Virulence
10.
Mol Biol Cell ; 27(17): 2784-801, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27385340

ABSTRACT

During interactions with its mammalian host, the pathogenic yeast Candida albicans is exposed to a range of stresses such as superoxide radicals and cationic fluxes. Unexpectedly, a nonbiased screen of transcription factor deletion mutants revealed that the phosphate-responsive transcription factor Pho4 is vital for the resistance of C. albicans to these diverse stresses. RNA-Seq analysis indicated that Pho4 does not induce stress-protective genes directly. Instead, we show that loss of Pho4 affects metal cation toxicity, accumulation, and bioavailability. We demonstrate that pho4Δ cells are sensitive to metal and nonmetal cations and that Pho4-mediated polyphosphate synthesis mediates manganese resistance. Significantly, we show that Pho4 is important for mediating copper bioavailability to support the activity of the copper/zinc superoxide dismutase Sod1 and that loss of Sod1 activity contributes to the superoxide sensitivity of pho4Δ cells. Consistent with the key role of fungal stress responses in countering host phagocytic defenses, we also report that C. albicans pho4Δ cells are acutely sensitive to macrophage-mediated killing and display attenuated virulence in animal infection models. The novel connections between phosphate metabolism, metal homeostasis, and superoxide stress resistance presented in this study highlight the importance of metabolic adaptation in promoting C. albicans survival in the host.


Subject(s)
DNA-Binding Proteins/metabolism , Transcription Factors/metabolism , Adaptation, Physiological/physiology , Candida albicans/genetics , Candida albicans/metabolism , Copper/metabolism , Fungal Proteins/metabolism , Homeostasis , Metals , Oxidative Stress/physiology , Phosphates , Saccharomyces cerevisiae Proteins , Sequence Analysis, RNA , Stress, Physiological , Superoxide Dismutase/genetics , Superoxide Dismutase-1/metabolism , Virulence/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...