Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Endocrinol ; 175(3): 615-23, 2002 Dec.
Article in English | MEDLINE | ID: mdl-12475373

ABSTRACT

The discovery of a link between an adverse in utero environment and the propensity to develop metabolic and cardiovascular disease in adult life is one of the most important advances in epidemiological research of recent Years. Increasing experimental evidence suggests that alterations in the fetal environment may have long-term consequences for the development of metabolic disorders in adult life. This process has been termed 'fetal programming' and we have shown that undernutrition of the mother during gestation leads to development of the metabolic syndrome X during adult life. Striking metabolic similarities exist between syndrome X and untreated GH deficiency (GHD). In the present study we have investigated the effects of GH treatment on blood pressure and metabolic parameters. Virgin Wistar rats (age 75+/-5 days, n=20 per group) were time-mated and randomly assigned to receive food either ad libitum (AD) or 30% of AD intake (UN) throughout pregnancy. At weaning, male offspring were assigned to one of two diets (control or hypercaloric (30% fat)). Systolic blood pressure was measured at day 100 and following twice daily treatment with recombinant bovine GH for 21 days. GH treatment increased body weights in all treated animals but significantly reduced retroperitoneal and gonadal fat pad weights. Following GH treatment, systolic blood pressure was markedly decreased in all UN offspring. Saline-treated animals showed no change in systolic blood pressure over the treatment period. GH treatment increased heart-to-body weight ratio in all GH-treated animals. Our data demonstrated that GH treatment reduces hypertension and improves cardiovascular function in animals exposed to adverse environmental conditions during fetal or postnatal life.


Subject(s)
Growth Hormone/therapeutic use , Hypertension/drug therapy , Hypertension/embryology , Maternal Nutritional Physiological Phenomena , Obesity/drug therapy , Obesity/embryology , Analysis of Variance , Animals , Blood Glucose/metabolism , Body Weight , Energy Intake , Female , Fetal Growth Retardation , Hypertension/metabolism , Insulin-Like Growth Factor I/metabolism , Male , Obesity/metabolism , Organ Size , Pregnancy , Random Allocation , Rats , Rats, Wistar
2.
Mol Cell Endocrinol ; 185(1-2): 73-9, 2001 Dec 20.
Article in English | MEDLINE | ID: mdl-11738796

ABSTRACT

Obesity and related metabolic disorders are prevalent health issues in modern society and are commonly attributed to lifestyle and dietary factors. However, the mechanisms by which environmental factors modulate the physiological systems that control weight regulation and the aetiology of metabolic disorders, which manifest in adult life, may have their roots before birth. The 'fetal origins' or 'fetal programming' paradigm is based on the observation that environmental changes can reset the developmental path during intrauterine development leading to obesity and cardiovascular and metabolic disorders later in life. The pathogenesis is not based on genetic defects but on altered genetic expression as a consequence of an adaptation to environmental changes during fetal development. While many endocrine systems can be affected by fetal programming recent experimental studies suggest that leptin and insulin resistance are critical endocrine defects in the pathogenesis of programming-induced obesity and metabolic disorders. However, it remains to be determined whether postnatal obesity is a consequence of programming of appetite regulation and whether hyperphagia is the main underlying cause of the increased adiposity and the development of metabolic disorders.


Subject(s)
Appetite/physiology , Obesity/embryology , Prenatal Exposure Delayed Effects , Animals , Endocrine Glands/embryology , Endocrine Glands/physiopathology , Female , Fetus/physiopathology , Humans , Insulin Resistance/physiology , Leptin/physiology , Obesity/etiology , Pregnancy
3.
Brain Res ; 918(1-2): 40-50, 2001 Nov 09.
Article in English | MEDLINE | ID: mdl-11684040

ABSTRACT

Recently, much attention has focused on the role of the melanocortin system in the regulation of energy homeostasis, especially the satiety effects of the pro-opiomelanocortin (POMC)-derived peptide alpha-melanocyte stimulating hormone (alpha-MSH). We have found that POMC mRNA levels are similar in fat and thin sheep and the current study sought to further characterize the effects of nutritional status on the melanocortin system. To this end, we studied the expression of agouti-related peptide (AGRP) (an endogenous antagonist of alpha-MSH) and cocaine- and amphetamine-regulated transcript (CART), which is co-localized within POMC cells of the arcuate nucleus (ARC) in rodents. Twelve ovariectomized ewes were randomly divided into two groups and fed a maintenance (n=6) or restricted diet (n=6). At the time of experimentation, the animals had significantly (P<0.0001) different bodyweights (53.4+/-2.2 kg, ad libitum vs. 30.4+/-1.2 kg, food-restricted), which was largely due to altered body fat deposits. In situ hybridization was used to study the expression of POMC, AGRP and CART. The expression of POMC in the ARC was similar in ad libitum and food-restricted animals but the expression of AGRP was profoundly increased in the food-restricted group. The expression of CART was abundant throughout the hypothalamus but was not found in the ARC. In food-restricted animals, the expression of CART was lower in the retrochiasmatic nucleus (P<0.01), paraventricular nucleus (P<0.001), the dorsomedial nucleus and the lateral hypothalamic area (P<0.05), but was higher (P<0.01) in the posterior hypothalamic area. Thus, long-term changes in nutritional status have profound effects on the expression of AGRP and CART in the hypothalamus.


Subject(s)
Arcuate Nucleus of Hypothalamus/metabolism , Body Weight/physiology , Eating/physiology , Food Deprivation/physiology , Nerve Tissue Proteins/genetics , Pro-Opiomelanocortin/genetics , Proteins/genetics , Agouti-Related Protein , Animals , Arcuate Nucleus of Hypothalamus/cytology , Female , Food, Formulated , Gene Expression Regulation/physiology , Homeostasis/physiology , Intercellular Signaling Peptides and Proteins , RNA, Messenger/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Sheep
4.
Endocrinology ; 142(9): 3964-73, 2001 Sep.
Article in English | MEDLINE | ID: mdl-11517175

ABSTRACT

The discovery of a link between in utero experience and later metabolic and cardiovascular disease is one of the most important advances in epidemiology research of recent years. There is increasing evidence that alterations in the fetal environment may have long-term consequences on cardiovascular, metabolic, and endocrine pathophysiology in adult life. This process has been termed programming, and we have shown that undernutrition of the mother during gestation leads to programming of hyperphagia, obesity, hypertension, hyperinsulinemia, and hyperleptinemia in the offspring. Using this model of maternal undernutrition throughout pregnancy combined with postnatal hypercaloric nutrition of the offspring, we examined the effects of IGF-I therapy. Virgin Wistar rats (age 75 +/- 5 d, n = 20 per group) were time mated and randomly assigned to receive food either ad libitum or 30% of ad libitum intake (UN) throughout pregnancy. At weaning, female offspring were assigned to one of two diets (control or hypercaloric [30% fat]). Systolic blood pressure was measured at day 175 and following infusion with 3 microg/g per day recombinant human IGF-1 (rh-IGF-I) by minipump for 14 d. Before treatment, UN offspring were hyperinsulinemic, hyperleptinemic, hyperphagic, obese, and hypertensive on both diets, compared with ad libitum offspring and this was exacerbated by hypercaloric nutrition. IGF-I treatment increased body weight in all treated animals. However, systolic blood pressure, food intake, retroperitoneal and gonadal fat pad weights, and plasma leptin and insulin concentrations were markedly reduced with IGF-I treatment. IGF-I treatment resulted in a 3- to 5-fold increase in 38--44 kDa and 28--30 kDa IGF binding proteins, although in UN animals, there was an impaired and differential up-regulation of these insulin-like growth factor binding proteins following IGF-I treatment. The 24-kDa IGF binding protein representing IGF binding protein-4 was down-regulated in all IGF-I-treated animals, but the decrease was more marked in UN animals. Our data suggest that IGF-I treatment alleviates hyperphagia, obesity, hyperinsulinemia, hyperleptinemia, and hypertension in rats programmed to develop the metabolic syndrome X.


Subject(s)
Hyperphagia/drug therapy , Hypertension/drug therapy , Insulin-Like Growth Factor I/therapeutic use , Nutrition Disorders/complications , Obesity/drug therapy , Pregnancy Complications , Prenatal Exposure Delayed Effects , Animals , Animals, Newborn , Embryonic and Fetal Development/physiology , Female , Hyperphagia/etiology , Hypertension/etiology , Metabolic Diseases/etiology , Obesity/etiology , Pregnancy , Rats , Rats, Wistar
5.
J Endocrinol ; 170(2): 323-32, 2001 Aug.
Article in English | MEDLINE | ID: mdl-11479129

ABSTRACT

Obesity and its related disorders are the most prevalent health problems in the Western world. Using the paradigm of fetal programming we developed a rodent model which displays the phenotype of obesity and metabolic disorders commonly observed in human populations. We apply maternal undernutrition throughout gestation, generating a nutrient-deprived intrauterine environment to induce fetal programming. Maternal undernutrition results in fetal growth retardation and in significantly decreased body weight at birth. Programmed offspring develop hyperphagia, obesity, hypertension, hyperleptinemia and hyperinsulinism during adult life and postnatal hypercaloric nutrition amplifies the metabolic abnormalities induced by fetal programming. The adipoinsular axis has been proposed as a primary candidate for linking the status of body fat mass to the function of the pancreatic beta-cells. We therefore investigated the relationship between circulating plasma concentrations of leptin and insulin and immunoreactivity in the endocrine pancreas for leptin and leptin receptor (OB-R) in genetically normal rats that were programmed to become obese during adult life. Virgin Wistar rats were time mated and randomly assigned to receive food either available ad libitum (AD group) or at 30% of the ad libitum available intake (UN group). Offspring from UN mothers were significantly smaller at birth than AD offspring (AD 6.13+/-0.04 g, UN 4.02+/-0.03 g, P<0.001). At weaning, offspring were assigned to one of two diets (a standard control diet or a hypercaloric diet consisting of 30% fat) for the remainder of the study. At the time of death (125 days of age), UN offspring had elevated (P<0.005) fasting plasma insulin (AD control 1.417+/-0.15 ng/ml, UN control 2.493+/-0.33 ng/ml, AD hypercaloric 1.70+/-0.17 ng/ml, UN hypercaloric 2.608+/-0.41 ng/ml) and leptin (AD control 8.8+/-1.6 ng/ml, UN control 14.32+/-1.9 ng/ml, AD hypercaloric 15.11+/-1.8 ng/ml, UN hypercaloric 30.18+/-5.3 ng/ml) concentrations, which were further increased (P<0.05) by postnatal hypercaloric nutrition. The elevated plasma insulin and leptin concentrations were paralleled by increased immunolabeling for leptin in the peripheral cells of the pancreatic islets. Dual immunofluorescence histochemistry for somatostatin and leptin revealed that leptin was co-localized in the pancreatic delta-cells. OB-R immunoreactivity was evenly distributed throughout the pancreatic islets and was not changed by programming nor hypercaloric nutrition. Our data suggest that reduced substrate supply during fetal development can trigger permanent dysregulation of the adipoinsular feedback system leading to hyperleptinemia, hyperinsulinism and compensatory leptin production by pancreatic delta-cells in a further attempt to reduce insulin hypersecretion in the progression to adipogenic diabetes.


Subject(s)
Diabetes Mellitus/etiology , Insulin/blood , Leptin/blood , Nutrition Disorders/embryology , Obesity/embryology , Prenatal Exposure Delayed Effects , Receptors, Cell Surface , Adipose Tissue/metabolism , Animals , Blood Glucose/analysis , Carrier Proteins/analysis , Diabetes Mellitus/metabolism , Female , Immunohistochemistry/methods , Islets of Langerhans/chemistry , Leptin/analysis , Models, Animal , Nutrition Disorders/metabolism , Obesity/metabolism , Pregnancy , Radioimmunoassay/methods , Random Allocation , Rats , Rats, Wistar , Receptors, Leptin , Somatostatin/analysis , Somatostatin-Secreting Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...